The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Endothelial dysfunction is an important factor in cardiovascular pathology. It has been suggested that pluripotent mesenchymal stem cells (MSCs) may contribute to repair of the endothelium through paracrine pathways. Enhanced re-endothelialization may be associated with a better outcome following angioplasty procedures. We examined the effect of the delivery of MSCs to a denuded vessel in vivo. The right carotid arteries of New Zealand white rabbits were denuded using an uninflated 3-French Fogarty balloon catheter. 1 x 10(5) MSCs in a bolus of 150 microL were then delivered intraluminally and allowed to dwell for 20 min. MSC engraftment was assessed using PKH-26 labeling and transduction with adenoviral reporter genes. Vessels were examined at 2 weeks for levels of endothelialization, as well as for neointimal hyperplasia and vasomotor function. Engraftment of MSCs was noted in the vessel wall following local arterial delivery. Endothelialization was improved following bolus MSC delivery at 2 weeks post-intervention. However, this endothelium is manifestly dysfunctional as indicated by a significant impairment in vasomotor activity and a significant increase in neointimal formation post-bolus delivery. Consistent with the formation of a dysfunctional endothelium, there was a higher rate of vessel occlusions in bolus-treated vessels due to not only predominately thrombosis but also neointimal hyperplasia. Our results suggest that naive MSCs delivered as a bolus to the occluded injured vascular segment generate dysfunctional endothelium presenting a risk of vessel occlusion. Such risks are important and need to be further assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.