The aim of this study was to investigate the role of metabolic activation in the olfactory toxicity of methyl iodide (MeI). Adult male rats were exposed via nose-only inhalation to 100 ppm MeI for 0-6 h, and non-protein sulphydryl (NP-SH) concentrations determined in selected tissues. Depletion of NP-SH occurred in all tissues, but was most marked and rapid in the respiratory epithelium of the nasal cavity and the kidney. Olfactory, lung and liver NP-SH levels were affected to a lesser extent, and those of the brain declined by only 20-30% over the whole time course. In order to modulate glutathione (GSH) status, animals were pre-treated with (1) phorone plus L-buthionine sulphoximine (BSO), which depleted NP-SH levels in all the tissues examined, or (2) the isopropyl ester of GSH (IP-GSH), which was shown to replenish NP-SH concentrations in all tissues except the liver of animals previously administered phorone. When animals were pre-treated with phorone plus BSO and then exposed to 100 ppm MeI for 2 h, there was a potentiation of the toxicity of MeI as judged by the clinical observations on the animals. In contrast, treatment with IP-GSH prior to and during exposure to MeI for 4 h afforded a marked protection to the olfactory epithelium. In order to inhibit cytochromes P450, animals were pre-treated with cobalt protoporphyrin IX. This decreased hepatic cytochrome P450 concentrations by > 90%, but when animals were then exposed to 100 ppm MeI for 4 h there was no effect on the severity of the olfactory lesion. These results indicate that conjugation of MeI with GSH is a detoxification rather than an activation pathway. Also, there is no major role for cytochrome P450-dependent oxidation in the development of the olfactory lesion.
Interest in the olfactory mucosa has increased in recent years, since it has been shown to possess a considerable amount of cytochrome P-450-dependent monooxygenase activity and a wide variety of chemicals have been identified as olfactory toxins. Many chemicals induce lesions of a general nature in the olfactory mucosa, i.e., inflammation, degeneration, regeneration, and proliferation, whereas others cause more specific effects. Changes in the olfactory mucosa with reference to chemicals that initiate them are reviewed in this paper. Studies with 3-trifluoromethyl pyridine (3FMP) illustrate some of these general changes and show the importance of examining the olfactory mucosa at early time periods. The earliest damage seen by light microscopy was 6 hr after a single inhalation exposure to 3FMP, and by day 3, early regenerative changes were observed. Changes were seen by electron microscopy 30 min after an oral dose, and the primary site of toxicity appeared to be the Bowman's glands. Although atrophy of nerve bundles in the lamina propria would be the expected consequence of severe necrosis of the sensory cells, this is not always the case. Exposure to irritants such as acetaldehyde, formaldehyde, and dimethylamine results in nerve bundle atrophy, but with chemicals such as 3FMP, 3-methylindole, and 3-methylfuran--which are activated by mixed-function oxidases--the nerve bundles remain intact. Future work, including metabolism studies, will provide information on the mode of action of these chemicals.
The monohalomethanes (methyl iodide, methyl bromide and methyl chloride) are widely used industrial methylating agents with pronounced acute and chronic toxicity in both experimental animals and man. Recently inhalation exposure of rats to methyl bromide has been shown to result in severe olfactory toxicity. This study examined the effects on the rat nasal cavity of inhalation of methyl iodide (100 ppm for 0.5-6 h), and demonstrated that methyl iodide is a more potent olfactory toxin than methyl bromide. Within the nasal cavity the olfactory epithelium was the principle target tissue, and it was only at high doses (600 ppm.h) that limited damage to transitional epithelium occurred. The squamous and respiratory epithelia were consistently unaffected. Within olfactory epithelium the sustentacular cells were the primary cellular target and damage to sensory cells appeared to be a secondary event. Methyl iodide induced olfactory damage was reversible, and 2 weeks after exposure almost complete repair had taken place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.