Lipid A constitutes the outer monolayer of the outer membrane of Gram-negative bacteria and is essential for bacterial growth. Synthetic antibacterials were identified that inhibit the second enzyme (a unique deacetylase) of lipid A biosynthesis. The inhibitors are chiral hydroxamic acids bearing certain hydrophobic aromatic moieties. They may bind to a metal in the active site of the deacetylase. The most potent analog (with an inhibition constant of about 50 nM) displayed a minimal inhibitory concentration of about 1 microgram per milliliter against Escherichia coli, caused three logs of bacterial killing in 4 hours, and cured mice infected with a lethal intraperitoneal dose of E. coli.
MK-0991 (L-743,872) is a potent antifungal agent featuring long half-life pharmacokinetics. The pharmacokinetics of MK-0991 administered intravenously to mice, rats, rhesus monkeys, and chimpanzees is presented. Unique to MK-0991 is its consistent cross-species performance. The range of values for the pharmacokinetic parameters were as follows: clearance, 0.26 to 0.51 ml/min/kg; half-life, 5.2 to 7.6 h; and distributive volume, 0.11 to 0.27 liters/kg. The level of protein binding of MK-0991 was determined to be 96% in mouse and human serum. The compound exhibited high affinities for human serum albumin and at least two lipid components. The rationale for the selection of MK-0991 as a drug development candidate was based on its two- to threefold superior pharmacokinetic performance in chimpanzees over the performance of an otherwise equivalent analog, L-733,560. Once-daily dosing for MK-0991 is indicated by a graphical comparison of levels in the circulations of chimpanzees and mice. In a study of the pharmacokinetics of MK-0991 in mouse tissue, the organs were assayed following intraperitoneal administration. The area under the concentration-versus-time curves (AUC) segregated the tissues into three exposure categories relative to plasma. The tissues with greater exposure than that for plasma were liver (16 times), kidney (3 times), and large intestine (2 times). The exposure for small intestine, lung, and spleen were equivalent to that for plasma. Organs with lower levels of exposure were the heart (0.3 times that for plasma), thigh (0.2 times), and brain (0.06 times). Kinetically, drug was cleared more slowly from all tissues than from plasma, indicating that terminal-phase equilibrium had not been achieved by 24 h. Thus, some measure of accumulation is predicted for all tissues. Single daily doses of MK-0991 should provide adequate systemic levels of fungicidal activity as a result of its long half-life pharmacokinetics, wide distribution, and slowly accumulating concentrations in tissue.
Difficidin and oxydifficidin, two novel macrocyclic polyene lactone phosphate esters were discovered in fermentation broths of each of two strains of Bacillus subtilis: ATCC 39320 and ATCC39374. Difficidin and oxydifficidin each showed a broad spectrum of activity against aerobic and anaerobic bacteria. Manyof the susceptible aerobes and anaerobes were humanpathogens resistant to one or more antibiotics. Difficidin and oxydifficidin when administered intraperitoneally protected mice against an otherwise lethal bacteremia caused by Klebsiella pneumoniae (ED50 in mg/kg of 1.31 and 15.6 respectively).Neither difficidin nor oxydifficidin were effective when administered via the subcutaneous route.In the course of screening for new antibiotics, difficidin and oxydifficidin, two novel macrocyclic polyene lactone phosphate esters0, (Fig. 1)
The isolation of difficidin (1) and oxydifficidin (2) from fermentation broth of Bacillus subtilis ATCC39320 and the physico-chemical characterization of these labile antibiotics are described. Thestructures of the compounds represent a newclass of antibiotics, characterized as highly unsaturated 22-membered macrolide phosphates. Difficidin and oxydifficidin undergo reversible thermal isomerization to 3 and 4 respectively. Biological evaluation of the isomers is presented.The preceding paper1} describes the discovery of two novel antibiotics, diffiddin (1) and oxydifficidin (2), as products of the fermentation of Bacillus subtilis strains ATCC39320 and ATCC39374.The compounds exhibit good antibacterial activity against both aerobic and anaerobic organisms.The mode of action of difficidin is addressed in the following the paper2). During isolation work on difficidin and oxydifficidin, minor antibacterial components 3 and 4 were also isolated from fermentation broth. This paper presents the isolation and physico-chemical properties of compounds 1~4. Experimental data show that 3 and 4 arise from thermal isomerization of difficidin and oxydifficidin respectively. The in vitro and in vivo antibacterial potencies of 3 and 4 are compared to those of difficidin and oxydifficidin.Scheme 1.
As a new prodrug approach to norfloxacin (NFLX) we prepared the acetoxyalkyl carbamates of the type NFLX-CO-OCHR-OAc by the reaction of sodium or mercuric acetate on NFLX alpha-chloroalkyl carbamates. These produrgs did not have the bitter taste of NFLX. In vitro, the acetoxyethyl carbamate exhibited activity only against Staphylococcus spp. and was inactive against Gram-negative organisms. However, in the presence of serum and intestinal homogenate, esterase-catalyzed hydrolysis of the ester bond in these modified carbamates led to a cascade reaction resulting in the rapid regeneration of NFLX. At high oral doses of the prodrug, the acetaldehyde produced as a side product in the breakdown of the promoiety caused a slight decrease in alcohol metabolism in a mouse model. The bioavailability of NFLX from the acetoxyethyl carbamate was lower compared to an equivalent dose of NFLX when given as an oral suspension in rhesus monkeys, presumably because of the lower aqueous solubility of the prodrug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.