The Genetic Counseling Definition Task Force of the National Society of Genetic Counselors (NSGC) developed the following definition of genetic counseling that was approved by the NSGC Board of Directors: Genetic counseling is the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease. This process integrates the following: Interpretation of family and medical histories to assess the chance of disease occurrence or recurrence. Education about inheritance, testing, management, prevention, resources and research. Counseling to promote informed choices and adaptation to the risk or condition. The definition was approved after a peer review process with input from the NSGC membership, genetic professional organizations, the NSGC legal counsel, and leaders of several national genetic advocacy groups.
Standard educational approaches may be equally effective as expanded counseling approaches in enhancing knowledge. Since knowledge is a key aspect of medical decision-making, standard education may be adequate in situations where genetic testing must be streamlined. On the other hand, it has been argued that optimal decision-making requires not only knowledge, but also a reasoned evaluation of the positive and negative consequences of alternate decisions. Although the counseling approach is more likely to achieve this goal, it may not diminish interest in testing, even among women at low to moderate risk. Future research should focus on the merits of these alternate approaches for subgroups of individuals with different backgrounds who are being counseled in the variety of settings where BRCA1 testing is likely to be offered.
Genome sequencing has been rapidly integrated into clinical research and is currently marketed to health-care practitioners and consumers alike. The volume of sequencing data generated for a single individual and the wide range of findings from wholegenome sequencing raise critical questions about the return of results and their potential value for end-users. We conducted a mixed-methods study of 311 sequential participants in the NIH ClinSeq study to assess general preferences and specific attitudes toward learning results. We tested how these variables predicted intentions to receive results within four categories of findings ranging from medically actionable to variants of unknown significance. Two hundred and ninety-four participants indicated a preference to learn their genome sequencing results. Most often, participants cited disease prevention as their reason, including intention to change their lifestyle behaviors. Participants held positive attitudes, strongly perceived social norms and strong intentions to learn results, although there were significant mean differences among four categories of findings (Po0.01). Attitudes and social norms for medically actionable and carrier results were most similar and rated the highest. Participants distinguished among the types and quality of information they may receive, despite strong intentions to learn all results presented. These intentions were motivated by confidence in their ability to use the information to prevent future disease and a belief in the value of even uninterpretable information. It behooves investigators to facilitate participants' desire to learn a range of information from genomic sequencing while promoting realistic expectations for its clinical and personal utility.
The promise of personalized medicine depends on the ability to integrate genetic sequencing information into disease risk assessment for individuals. As genomic sequencing technology enters the realm of clinical care, its scale necessitates answers to key social and behavioral research questions about the complexities of understanding, communicating, and ultimately using sequence information to improve health. Our study captured the motivations and expectations of research participants who consented to participate in a research protocol, ClinSeq, which offers to return a subset of the data generated through high-throughput sequencing. We present findings from an exploratory study of 322 participants, most of whom identified themselves as white, non-Hispanic, and coming from higher socio-economic groups. Participants aged 45-65 years answered open-ended questions about the reasons they consented to ClinSeq and about what they anticipated would come of genomic sequencing. Two main reasons for participating were as follows: a conviction to altruism in promoting research, and a desire to learn more about genetic factors that contribute to one's own health risk. Overall, participants expected genomic research to help improve understanding of disease causes and treatments. Our findings offer a first glimpse into the motivations and expectations of individuals seeking their own genomic information, and provide initial insights into the value these early adopters of technology place on information generated by high-throughput sequencing studies. European Journal of Human Genetics (2011Genetics ( ) 19, 1213Genetics ( -1217 doi:10.1038/ejhg.2011; published online 6 July 2011Keywords: whole-genome sequencing; personalized medicine; early adopters INTRODUCTION Genomics has already revolutionized the biological sciences, and the future application of genomics to health care has the potential to improve prevention, diagnosis, and treatment of disease by refining individual risk in the clinical setting. However, this potential can only be realized through translational and clinical research studies to establish the relationship of disease risk to genomic variants derived from sequencing data. These studies will necessitate the enrollment of thousands of clinical research participants, and thus methods and approaches need to be developed to interact and communicate with participants regarding clinical genomics. As well, these clinical genomics studies will serve as the foundation for the development of approaches to health-care providers' interactions with patients undergoing sequencing in the clinic and hospital wards of the future.High-throughput genomic sequencing can elucidate an enormous range of sequence and copy number variations for a given individual. A typical whole-genome sequence determination yields on the order of 4 000 000 sequence variations that differ from the current human reference sequence. While most are benign or of unknown consequence, some are associated with a significant increased risk of disease for ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.