Nicotinic cholinergic systems are involved with several important aspects of cognitive function including attention, learning and memory. Nicotinic cholinergic receptors are located in many regions of the brain, including areas important for cognitive function such as the hippocampus and frontal cortex. Nicotinic agonists have been found in rodent and non-human primate studies to improve performance on a variety of memory tasks. In a complementary fashion, nicotinic antagonists such as mecamylamine impair working memory function. In humans, similar effects have been seen. Nicotinic agonist treatment can improve attention, learning and memory and nicotinic antagonist treatment can cause deficits. To define the neural substrates of nicotinic involvement in cognitive function, three areas of investigation are underway. 1) Critical neuroanatomic loci for nicotinic effects are beginning to be determined. The hippocampus, frontal cortex and midbrain dopaminergic nuclei have been found to be important sites of action for nicotinic involvement in memory function. 2) Nicotinic receptor subtype involvement in cognitive function is being studied. There has been considerable recent work identifying nicotinic receptor subunit conformation including alpha and beta subunits. Nicotinic receptor subtypes appear to be associated with different functional systems; however, much remains to be done to determine the precise role each subtype plays in terms of cognitive function. 3) Nicotinic interactions with other transmitter systems are being assessed. Nicotine receptors interact in important ways with other systems to affect cognitive functioning, including muscarinic ACh, dopamine, norepinepherine, serotonin, glutamate, and other systems. Nicotinic function in clinical populations and potential for therapeutics has been investigated for Alzheimer's disease, Parkinson's disease, schizophrenia and attention deficit/hyperactivity disorder. Areas which need to receive greater attention are the exact anatomical location and the specific receptor subtypes critically involved in nicotine's effects. In addition, more work needs to be done to develop and determine the efficacy and safety of novel nicotinic ligands for use in the long-term treatment of human cognitive disorders.
Rabbits were trained on trace eyeblink (EB) conditioning until they reached a criterion of 10 consecutive EB conditioned responses (CRs). Electrolytic lesions were made in the medial prefrontal cortex (mPFC) centered on the prelimbic area (Brodmann's area 32), at five different intervals after training. These included immediately, 24 h, 1 and 2 weeks, and 1 month after training. Separate groups of animals received sham lesions at these same intervals after training. After a 2 week postoperative recovery period, all animals were retested for 3 d on trace conditioning, using the same parameters used during preoperative training. Mean EB conditioning performance deficits occurred in the animals with mPFC lesions compared with sham-lesioned animals on the first day of retesting in all five groups. However, by the second or third day of retesting, the rabbits with lesions were performing at a level that was comparable with that of sham animals. Rabbits that received more posterolateral lesions of the neocortex did not, however, show postoperative conditioning deficits. A comparison of percentage EB CRs of animals with postoperative training with that of animals that received mPFC lesions before training suggests that the mPFC post-training lesions produce damage to a retrieval process and not to a storage site or an acquisition process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.