Electrophysiological studies in some secretory and non-secretory cells have identified an extensive form of calcium-induced exocytosis that is rapid (hundreds of milliseconds), insensitive to tetanus toxin and distinct from regulated secretion. We have now identified a marker of the process, desmoyokin-AHNAK, in a clonal derivative of the neuronal cell line, PC12. In resting cells, desmoyokin-AHNAK is localized within the lumen of specific vesicles, but appears on the cell surface during stimulation. Desmoyokin-AHNAK-positive vesicles exist in a variety of cells and tissues and are distinct from the endoplasmic reticulum, Golgi, trans-Golgi, endosomes and lysosomes, and from Glut4 and constitutive secretion vesicles. They seem to be involved in two models of plasmalemma enlargement: differentiation and membrane repair. We therefore propose that these vesicles should be called 'enlargosomes'.
Pancreatic beta-cells store insulin in secretory granules that undergo exocytosis upon glucose stimulation. Sustained stimulation depletes beta-cells of their granule pool, which must be quickly restored. However, the factors promoting rapid granule biogenesis are unknown. Here we show that beta-cell stimulation induces the nucleocytoplasmic translocation of polypyrimidine tract-binding protein (PTB). Activated cytosolic PTB binds and stabilizes mRNAs encoding proteins of secretory granules, thus increasing their translation, whereas knockdown of PTB expression by RNA interference (RNAi) results in the depletion of secretory granules. These findings may provide insight for the understanding and treatment of diabetes, in which insulin secretion is typically impaired.
Resealing after wounding, the process of repair following plasma membrane damage, requires exocytosis. Vacuolins are molecules that induce rapid formation of large, swollen structures derived from endosomes and lysosomes by homotypic fusion combined with uncontrolled fusion of the inner and limiting membranes of these organelles. Vacuolin-1, the most potent compound, blocks the Ca 2 þ -dependent exocytosis of lysosomes induced by ionomycin or plasma membrane wounding, without affecting the process of resealing. In contrast, other cell structures and membrane trafficking functions including exocytosis of enlargeosomes are unaffected. Because cells heal normally in the presence of vacuolin-1, we suggest that lysosomes are dispensable for resealing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.