Emerging bacterial antibiotic resistance draws attention to bacteriophages as a therapeutic alternative to treat bacterial infection. Examples of phage that combat bacteria abound. However, despite careful testing of antibacterial activity in vitro, failures nevertheless commonly occur. We investigated immunological response of phage antibacterial potency in vivo. Anti-phage activity of phagocytes, antibodies, and serum complement were identified by direct testing and by high-resolution fluorescent microscopy. We accommodated the experimental data into a mathematical model. We propose a universal schema of innate and adaptive immunity impact on phage pharmacokinetics, based on the results of our numerical simulations. We found that the mammalian-host response to infecting bacteria causes the concomitant removal of phage from the system. We propose the notion that this effect as an indirect pathway of phage inhibition by bacteria with significant relevance for the clinical outcome of phage therapy.
In this article we compare the efficacy of different pharmacological agents (ranitidine, and omeprazole) to support phage transit from stomach to distal portions of the gastrointestinal tract in rats. We show that a temporal modification of environment in the animal stomach may protect Twort-like therapeutic antistaphylococcal phage A5/80 (from bacteriophage collection of the Hirszfeld Institute of Immunology and Experimental Therapy PAS in Wroclaw, Poland) from the inactivation by gastric juice effectively enough to enable a significant fraction of orally administered A5/80 to pass to the intestine. Interestingly, we found that yogurt may be a relatively strong in enhancing phage transit. Given the immunomodulating activities of phages our data may suggest that phages and yogurt can act synergistically in mediating their probiotic activities and enhancing the effectiveness of oral phage therapy. We also demonstrate that orally applied phages of similar size, morphology, and sensitivity to acidic environment may differ in their translocation into the bloodstream. This was evident in mice in which a therapeutic staphylococcal phage A5/80 reached the blood upon oral administration combined with antacid agent whilst T4 phage was not detected even when applied in 103 times higher dose. Our findings also suggest that phage penetration from digestive tract to the blood may be species-specific.
Phage preparations used for phage therapy may have not only direct antibacterial action but also immunomodulating effects mediated by phages themselves as well as by bacterial antigens. Therefore phage application in patients with immune disorders, and especially with autoimmune diseases, requires special attention. The aim of this study was to investigate the effect of phage lysates (staphylococcal phages A3/R, phi200, and MS-1 cocktail, enterococcal phage 15/P, Pseudomonas phage 119x, and E. coli T4 phage) as well as purified T4 phage on the course of murine collagen-induced arthritis (CIA), commonly used as an animal model of rheumatoid arthritis. Intraperitoneal application of phage lysates or purified T4 phage did not aggravate the course of autoimmune joint disease. Moreover, although endotoxins are known to potentiate CIA, the systemic administration of phage lysate of Pseudomonas aeruginosa, which contains debris of this Gram-negative bacillus, did not significantly influence CIA although the sonicate of the corresponding bacterial strain did. Interestingly, a purified T4 phage revealed some anti-inflammatory activity when applied under the therapeutic scheme. Our preliminary results do not suggest that phages may aggravate the symptoms of rheumatoid arthritis. In contrast T4 phage may even exert an immunosuppressive effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.