Emerging bacterial antibiotic resistance draws attention to bacteriophages as a therapeutic alternative to treat bacterial infection. Examples of phage that combat bacteria abound. However, despite careful testing of antibacterial activity in vitro, failures nevertheless commonly occur. We investigated immunological response of phage antibacterial potency in vivo. Anti-phage activity of phagocytes, antibodies, and serum complement were identified by direct testing and by high-resolution fluorescent microscopy. We accommodated the experimental data into a mathematical model. We propose a universal schema of innate and adaptive immunity impact on phage pharmacokinetics, based on the results of our numerical simulations. We found that the mammalian-host response to infecting bacteria causes the concomitant removal of phage from the system. We propose the notion that this effect as an indirect pathway of phage inhibition by bacteria with significant relevance for the clinical outcome of phage therapy.
In therapeutic phage applications oral administration is a common and well-accepted delivery route. Phages applied per os may elicit a specific humoral response, which may in turn affect phage activity. We present specific anti-phage antibody induction in mice receiving therapeutic staphylococcal bacteriophage A3R or 676Z in drinking water. The schedule comprised: (1) primary exposure to phages for 100 days, followed by (2) diet without phage for 120 days, and (3) secondary exposure to the same phage for 44 days. Both phages induced specific antibodies in blood (IgM, IgG, IgA), even though poor to ineffective translocation of the phages to blood was observed. IgM reached a maximum on day 22, IgG increased from day 22 until the end of the experiment. Specific IgA in the blood and in the gut were induced simultaneously within about 2 months; the IgA level gradually decreased when phage was removed from the diet. Importantly, phage-specific IgA was the limiting factor for phage activity in the gastrointestinal tract. Multicopy proteins (major capsid protein and tail morphogenetic protein H) contributed significantly to phage immunogenicity (IgG), while the baseplate protein gpORF096 did not induce a significant response. Microbiome composition assessment by next-generation sequencing (NGS) revealed that no important changes correlated with phage treatment.
Comparisons of cognitive impairments between schizophrenia (SZ) and bipolar disorder (BPD) have produced mixed results. We applied different working memory (WM) measures (Digit Span Forward and Backward, Short-delay and Long-delay CPT-AX, N-back) to patients with SZ (n = 23), psychotic BPD (n = 19) and non-psychotic BPD (n = 24), as well as to healthy controls (HC) (n = 18) in order to compare the level of WM impairments across the groups. With respect to the less demanding WM measures (Digit Span Forward and Backward, Short-delay CPT-AX), there were no between group differences in cognitive performance; however, with respect to the more demanding WM measures (Long-delay CPT-AX, N-back), we observed that the groups with psychosis (SZ, psychotic BPD) did not differ from one another, but performed poorer than the group without a history of psychosis (non-psychotic BPD). A history of psychotic symptoms may influence cognitive performance with respect to WM delay and load effects as measured by Long-delay CPT-AX and N-back tests, respectively. We observed a positive correlation of WM performance with antipsychotic treatment and a negative correlation with depressive symptoms in BPD and with negative symptoms in SZ subgroup. Our study suggests that WM dysfunctions are more closely related to a history of psychosis than to the diagnostic categories of SZ and BPD described by psychiatric classification systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.