We describe a patient who presented shortly after birth with hyperkinetic behaviour, myoclonia, respiratory insufficiency and hepatosplenomegaly. Gaucher-like storage cells were found in bone marrow. A liver biopsy showed massive lysosomal storage morphologically different to that in known lipid storage disorders. Biochemically, the patient had partial deficiencies of beta-galactocerebrosidase, beta-glucocerebrosidase and ceramidase in skin fibroblast extracts, but the sphingomyelinase activity was normal. Glucosyl ceramide and ceramide were elevated in liver tissue. Loading of cultured fibroblasts with radioactive sphingolipid precursors indicated a profound defect in ceramide catabolism. Immunological studies in fibroblasts showed a total absence of cross-reacting material to sphingolipid activator protein 2 (SAP-2). The patient died at 16 weeks of age. The fetus from his mother's next pregnancy was similarly affected. The possibility that the disorder results from a primary defect at the level of SAP-2 is discussed. We have named this unique disorder SAP deficiency.
Zellweger syndrome is the archetypical peroxisome biogenesis disorder and is characterized by defective import of proteins into the peroxisome, leading to peroxisomal metabolic dysfunction and widespread tissue pathology. In humans, mutations in the PEX13 gene, which encodes a peroxisomal membrane protein necessary for peroxisomal protein import, can lead to a Zellweger phenotype. To develop mouse models for this disorder, we have generated a targeted mouse with a loxP-modified Pex13 gene to enable conditional Cre recombinasemediated inactivation of Pex13. In the studies reported here, we crossed these mice with transgenic mice that express Cre recombinase in all cells to generate progeny with ubiquitous disruption of Pex13. The mutant pups exhibited many of the clinical features of Zellweger syndrome patients, including intrauterine growth retardation, severe hypotonia, failure to feed, and neonatal death. These animals lacked morphologically intact peroxisomes and showed deficient import of matrix proteins containing either type 1 or type 2 targeting signals. Biochemical analyses of tissue and cultured skin fibroblasts from these animals indicated severe impairment of peroxisomal fatty acid oxidation and plasmalogen synthesis. The brains of these animals showed disordered lamination in the cerebral cortex, consistent with a neuronal migration defect. Thus, Pex13؊/؊ mice reproduce many of the features of Zellweger syndrome and PEX13 deficiency in humans.
A fatal infantile storage disorder with hepatosplenomegaly and severe neurological disease is described. Sphingolipids, including monohexosylceramides (mainly glucosylceramide), dihexosylceramides (mainly lactosylceramide), globotriaosyl ceramide, sulphatides, ceramides and globotetraosyl ceramide, were stored in the tissues. In general, cholesterol and sphingomyelin levels were unaltered. The storage process was generalized and affected a number of cell types, with histiocytes, which infiltrated a number of visceral organs and the brain, especially involved. The ultrastructure of the storage lysosomes was membranous with oligolamellar, mainly vesicular, profiles. Infrequently, there were Gaucher-like lysosomes in histiocytes. The neuropathology was severe and featured neuronal storage and loss with a massive depopulation of cortical neurons and pronounced fibrillary astrocytosis. There was a paucity of myelin and stainable axons in the white matter with signs of active demyelination. Immunohistochemical investigations indicated that saposins A, B, C and D were all deficient. The patient was homozygous for a 1 bp deletion (c.803delG) within the SAP-B domain of the prosaposin gene which leads to a frameshift and premature stop codon. In the heterozygous parents, mutant cDNA was detected by amplification refractory mutation analysis in the nuclear, but not the cytoplasmic, fraction of fibroblast RNA, indicating that the mutant mRNA was rapidly degraded. The storage process in the proband resembled that of a published case from an unrelated family. Saposins were also deficient in this case, leading to its reclassification as prosaposin deficiency, and her mother was found to be a carrier for the same c.803delG mutation. Both of the investigated families came from the same district of eastern Slovakia.
Zellweger cerebro-hepato-renal syndrome is a severe congenital disorder associated with defective peroxisomal biogenesis. At least 23 PEX genes have been reported to be essential for peroxisome biogenesis in various species, indicating the complexity of peroxisomal assembly. Cells from patients with peroxisomal biogenesis disorders have previously been shown to segregate into >/=12 complementation groups. Two patients assigned to complementation group G who had not been linked previously to a specific gene defect were confirmed as displaying a cellular phenotype characterized by a lack of even residual peroxisomal membrane structures. Here we demonstrate that this complementation group is associated with mutations in the PEX3 gene, encoding an integral peroxisomal membrane protein. Homozygous PEX3 mutations, each leading to C-terminal truncation of PEX3, were identified in the two patients, who both suffered from a severe Zellweger syndrome phenotype. One of the mutations involved a single-nucleotide insertion in exon 7, whereas the other was a single-nucleotide substitution eight nucleotides from the normal splice site in the 3' acceptor site of intron 10. Expression of wild-type PEX3 in the mutant cell lines restored peroxisomal biogenesis, whereas transfection of mutated PEX3 cDNA did not. This confirmed that the causative gene had been identified. The observation of peroxisomal formation in the absence of morphologically recognizable peroxisomal membranes challenges the theory that peroxisomes arise exclusively by growth and division from preexisting peroxisomes and establishes PEX3 as a key factor in early human peroxisome synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.