Globally, leopards are the most widespread large felid. However, mounting anthropogenic threats are rapidly reducing viable leopard populations and their range. Despite the clear pressures facing this species, there is a dearth of robust and reliable population and density estimates for leopards across their range, which is particularly important in landscapes that consist of protected and non-protected areas. We conducted a camera trapping survey between 2017 and 2018 in the Western Cape, South Africa to estimate the occupancy, density, and population size of a leopard population. Leopards were recorded at 95% of camera trapping sites, which resulted in a high occupancy that showed no significant variation between seasons, habitat types, or along an altitudinal gradient. Our results indicated a low leopard density in the study area, with an estimated 1.53 leopards/100 km2 in summer and 1.62 leopards/100 km2 in winter. Mean leopard population size was therefore estimated at 107 and 113 individuals in the winter and summer respectively. Leopard activity centres for female ranges were centred in the core study area and could be predicted with good certainty, while males appeared to move out of the study area during winter which resulted in a higher uncertainty in locations of activity centres. Interestingly, livestock depredation events in the surrounding farmlands were significantly higher in winter, which coincides with male leopards moving outside the core protected area into the surrounding farmlands. To reduce livestock losses and retaliatory leopard killings, we suggest that human-carnivore conflict mitigation measures be intensely monitored during the winter months in the study area. We also suggest that future leopard conservation efforts should focus on privately-owned land as these non-protected areas contain the majority of the remaining suitable leopard habitat and may provide important dispersal corridors and buffer zones on which the long-term sustainability of leopard populations depends.
Globally, leopards are the most widespread large felid. However, mounting anthropogenic threats are rapidly reducing viable leopard populations and their range. Despite the clear pressures facing this species, there is a dearth of robust and reliable population and density estimates for leopards across their range, which is particularly important in landscapes that consist of protected and non-protected areas. We conducted a camera trapping survey between 2017 and 2018 in the Western Cape, South Africa to estimate the occupancy, density, and population size of a leopard population. Leopards were recorded at 95% of camera trapping sites, which resulted in a high occupancy that showed no significant variation between seasons, habitat types, or along an altitudinal gradient. Our results indicated a low leopard density in the study area, with an estimated 1.53 leopards/100 km 2 in summer and 1.62 leopards/100 km 2 in winter. Mean leopard population size was therefore estimated at 107 and 113 individuals in the winter and summer respectively. Leopard activity centres for female ranges were centred in the core study area and could be predicted with good certainty, while males appeared to move out of the study area during winter which resulted in a higher uncertainty in locations of activity centres. Interestingly, livestock depredation events in the surrounding farmlands were significantly higher in winter, which coincides with male leopards moving outside the core protected area into the surrounding farmlands. To reduce livestock losses and retaliatory leopard killings, we suggest that human-carnivore conflict mitigation measures be intensely monitored during the winter months in the study area. We also suggest that future leopard conservation efforts should focus on privately-owned land as these non-protected areas contain the majority of the remaining suitable leopard habitat and may provide important dispersal corridors and buffer zones on which the long-term sustainability of leopard populations depends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.