Obesity is characterized by an excessive increase in body mass, leading to endothelial damage that may favor the development of erectile dysfunction (ED). ED is defined as the inability to achieve or maintain a penile erection long enough to have a sexual intercourse. In this context, different ED models were developed, however the high price of special animals or the long period to establish the disease has limited studies in this field. Therefore, this study proposed to establish and characterize a novel model of ED in rats associated to a hypercaloric diet consumption. Animals were randomly divided into control group (CG), which received a standard diet, and obese group (OG), fed with a hypercaloric diet during 8 weeks. Rat's erectile function was evaluated in vivo and in vitro. Food and caloric intake of OG were reduced compared to CG, due to an increased diet energy efficiency. However, OG presented an increased body mass, inguinal, retroperitoneal and epididymal adipose tissues, as well as body adiposity index at the end of experimental protocol. In erectile function analysis, there was a decrease in the number and the latency of penile erections in OG. Additionally, the contractile reactivity of corpus cavernosum was increased in OG, favoring penile detumescence and related to a reduced nitric oxide bioavailability and an increased in contractile prostaglandins levels as a consequence of endothelial damage. Moreover, the endothelium-relaxation reactivity of corpus cavernosum was attenuated in OG associated to the oxidative stress. Thus, it was provided a model for advances in sexual dysfunction field and drug discovery for ED treatment.
Spirulina platensis, an important source of bioactive compounds, is a multicellular, filamentous cyanobacterium rich in high-quality proteins, vitamins, minerals, and antioxidants. Due to its nutrient composition, the alga is considered a complete food and is recognized for its anti-inflammatory, antioxidant, antiobesity, and reproprotective effects. All of which are important for prevention and treatment of organic and metabolic disorders such as obesity and erectile dysfunction. The aim of this study was to investigate the modulatory role of Spirulina platensis food supplementation and the mechanisms of action involved in reversing the damage caused by a hypercaloric diet on the erectile function of rats. The animals were divided into a standard diet group (SD, n=5); a hypercaloric diet group (HCD, n=5); a hypercaloric diet group supplemented with S. platensis at doses of 25 (HCD+SP25, n=5), 50 (HCD+SP50, n=5), and 100 mg/kg (HCD+SP100, n=5); and a hypercaloric diet group subsequently fed a standard diet (HCD+SD, n=5). In the rats fed a hypercaloric diet, dietary supplementation with S. platensis effectively increased the number of erections while decreasing latency to initiate penile erection. Additionally, S. platensis increases NO bioavailability, reduces inflammation by reducing the release of contractile prostanoids, enhances the relaxation effect promoted by acetylcholine (ACh), restores contractile reactivity damage and cavernous relaxation, reduces reactive oxygen species (ROS), and increases cavernous total antioxidant capacity (TAC). Food supplementation with S. platensis thus restores erectile function in obese rats, reduces production of contractile prostanoids, reduces oxidative stress, and increases NO bioavailability. Food supplementation with S. platensis thus emerges as a promising new therapeutic alternative for the treatment of erectile dysfunction as induced by obesity.
Erectile dysfunction (ED) is the inability to achieve and/or maintain a penile erection sufficient for sexual satisfaction. Currently, many patients do not respond to the pharmacotherapy. The effects of a supplementation with Spirulina platensis, were evaluated in a model of ED induced by hypercaloric diet consumption. Wistar rats were divided into groups fed with standard diet (SD) or hypercaloric diet (HD) and supplemented with this alga at doses of 25, 50 or 100 mg/kg. Experimental adiposity parameters and erectile function were analyzed. In SD groups, Spirulina platensis reduced food intake, final body mass and adiposity index, and increased the total antioxidant capacity (TAC) of adipose tissue. However, no change was observed in erectile function. In the HD group, without Spirulina supplementation, a decrease in food intake was observed, in addition to an increase of final body mass, weight gain, adipose reserves, and adiposity index. Additionally, reduction in the number and increase in the latency of penile erection and adipose malondialdehyde levels, as well as a reduction in TCA was noted. Furthermore, cavernous contractility was increased, and the relaxing response was decreased. Interestingly, these deleterious effects were prevented by the algae at doses of 25, 50 and/or 100 mg/kg. Therefore, the supplementation with S. platensis prevents damages associated to a hypercaloric diet consumption and emerges as an adjuvant the prevention of ED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.