ObjectiveTo evaluate the utility of nerve diffusion tensor imaging (DTI), nerve cross‐sectional area, and muscle magnetic resonance imaging (MRI) multiecho Dixon for assessing proximal nerve injury in chronic inflammatory demyelinating polyneuropathy (CIDP).MethodsIn this prospective observational cohort study, 11 patients with CIDP and 11 healthy controls underwent a multiparametric MRI protocol with DTI of the sciatic nerve and assessment of muscle proton‐density fat fraction of the biceps femoris and the quadriceps femoris muscles by multiecho Dixon MRI. Patients were longitudinally evaluated by MRI, clinical examination, and nerve conduction studies at baseline and after 6 months.ResultsIn sciatic nerves of CIDP patients, mean cross‐sectional area was significantly higher and fractional anisotropy value was significantly lower, compared to controls. In contrast, muscle proton‐density fat fraction was significantly higher in thigh muscles of patients with CIDP, compared to controls. MRI parameters showed high reproducibility at baseline and 6 months.InterpretationAdvanced MRI parameters demonstrate subclinical proximal nerve damage and intramuscular fat accumulation in CIDP. Data suggest DTI and multiecho Dixon MRI might be useful in estimating axonal damage and neurogenic muscle changes in CIDP.
PurposeTo propose a T2-prepared 3D turbo spin echo (T2prep 3D TSE) sequence for B1-insensitive skeletal muscle T2 mapping and compare its performance with 2D and 3D multi-echo spin echo (MESE) for T2 mapping in thigh muscles of healthy subjects.MethodsThe performance of 2D MESE, 3D MESE and the proposed T2prep 3D TSE in the presence of transmit B1 and B0 inhomogeneities was first simulated. The thigh muscles of ten young and healthy subjects were then scanned on a 3 T system and T2 mapping was performed using the three sequences. Transmit B1-maps and proton density fat fraction (PDFF) maps were also acquired. The subjects were scanned three times to assess reproducibility. T2 values were compared among sequences and their sensitivity to B1 inhomogeneities was compared to simulation results. Correlations were also determined between T2 values, PDFF and B1.ResultsThe left rectus femoris muscle showed the largest B1 deviations from the nominal value (from 54.2% to 92.9%). Significant negative correlations between T2 values and B1 values were found in the left rectus femoris muscle for 3D MESE (r = -0.72, p<0.001) and 2D MESE (r = -0.71, p<0.001), but not for T2prep 3D TSE (r = -0.32, p = 0.09). Reproducibility of T2 expressed by root mean square coefficients of variation (RMSCVs) were equal to 3.5% in T2prep 3D TSE, 2.6% in 3D MESE and 2.4% in 2D MESE. Significant differences between T2 values of 3D sequences (T2prep 3D TSE and 3D MESE) and 2D MESE were found in all muscles with the highest values for 2D MESE (p<0.05). No significant correlations were found between PDFF and T2 values.ConclusionA strong influence of an inhomogeneous B1 field on the T2 values of 3D MESE and 2D MESE was shown, whereas the proposed T2prep 3D TSE gives B1-insensitive and reproducible thigh muscle T2 mapping.
Background: To characterize the effect of phase errors on the magnitude and the phase of the diffusionweighted (DW) signal acquired with diffusion-prepared turbo spin echo (dprep-TSE) sequences.Methods: Motion and eddy currents were identified as the main sources of phase errors. An analytical expression for the effect of phase errors on the acquired signal was derived and verified using Bloch simulations, phantom, and in vivo experiments.Results: Simulations and experiments showed that phase errors during the diffusion preparation cause both magnitude and phase modulation on the acquired data. When motion-induced phase error (MiPe) is accounted for (e.g., with motion-compensated diffusion encoding), the signal magnitude modulation due to the leftover eddy-current-induced phase error cannot be eliminated by the conventional phase cycling and sum-of-squares (SOS) method. By employing magnitude stabilizers, the phase-error-induced magnitude modulation, regardless of its cause, was removed but the phase modulation remained. The in vivo comparison between pulsed gradient and flow-compensated diffusion preparations showed that MiPe needed to be addressed in multi-shot dprep-TSE acquisitions employing magnitude stabilizers.Conclusions: A comprehensive analysis of phase errors in dprep-TSE sequences showed that magnitude stabilizers are mandatory in removing the phase error induced magnitude modulation. Additionally, when multi-shot dprep-TSE is employed the inconsistent signal phase modulation across shots has to be resolved before shot-combination is performed.
Purpose Isotropic high-resolution three-dimensional (3D) magnetic resonance neurography (MRN) is increasingly used to depict even small and highly oblique nerves of the lumbosacral plexus (LSP). The present study introduces a T2 mapping sequence (T2-prepared 3D turbo spin echo) that is B1-insensitive and enables quantitative assessment of LSP nerves. Methods In this study 15 healthy subjects (mean age 28.5 ± 3.8 years) underwent 3 T MRN of the LSP area three times. The T2 values were calculated offline on a voxel-by-voxel basis and measured at three segments (preganglionic, ganglionic, postganglionic) of three LSP nerves (S1, L5, L4) by two independent investigators (experienced and novice). Normative data for the different nerves were extracted and intraclass correlation coefficients (ICCs) were calculated to assess reproducibility and interobserver reliability of T2 measurements. Results The T2 mapping showed excellent reproducibility with ICCs ranging between 0.99 (S1 preganglionic) and 0.89 (L5 postganglionic). Interobserver reliability was less robust with ICCs ranging between 0.78 (S1 preganglionic) and 0.44 (L5 postganglionic) for S1 and L5. A mean T2 value of 74.6 ± 4.7 ms was registered for preganglionic segments, 84.7 ± 4.1 ms for ganglionic and 65.4 ± 2.5 ms for postganglionic segments, respectively. There was a statistically significant variation of T2 values across the nerve (preganglionic vs ganglionic vs postganglionic) for S1, L5, and L4. Conclusion Our approach enables isotropic high-resolution and B1-insensitive T2 mapping of LSP nerves with excellent reproducibility. It might reflect a robust and clinically useful method for future diagnostics of LSP pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.