Purpose Increased sedimentation due to land use intensification is increasingly affecting carbon processing in streams and rivers around the globe. This study describes the design of a laboratory-scale flow-through incubation system as a tool for the rapid estimation of sediment respiration. The measurements were compared with those obtained using an in situ closed chamber respiration method. The influence of sediment size on respiration rates was also investigated. Materials and methods Measurements were conducted on a pre-alpine gravel-bed river sediment separated into the following grain size fractions: > 60 mm (14.3%), 60-5 mm (60.2%), 5-2 mm (13.7%), 2-0.063 mm (11.1%) and <0.063 mm (0.6%). Concurrently, in situ and laboratory measurements were carried out on a naturally heterogeneous sediment. In situ respiration was determined in closed chambers as O 2 consumption over time, while in the laboratory, respiration was determined using flow-through respiration chambers. Oxygen concentrations were measured using a fibre-optic oxygen meter positioned at the inflow and outflow from the chamber. Results and discussion The mean respiration rates within naturally mixed riverbed sediments were 1.27 ± 0.3 mg O 2 dm −3 h −1 (n = 4) and 0.77 ± 0.1 mg O 2 dm −3 h −1 (n = 3) for the flow-through chamber system and closed chamber system, respectively. Respiration rates were statistically significantly higher in the flow-through chamber system (t test, p < 0.05), indicating that closed chamber measurements underestimated the oxygen consumption within riverbed sediments. Sediment grain size was found to significantly affect respiration rates in both systems (ANOVA, p < 0.001) with the fine sediment fraction (particle size <0.063 mm) having the highest respiration rate (r flow-through = 51 ± 23 mg O 2 dm −3 h −1 ). The smallest fractions (2-0.063 and <0.063 mm), which represent approximately 12% of total sediment volume, contributed 60% of total respiration. Conclusions The study demonstrated that flow-through respiration chambers more accurately estimate the respiration rate within riverbed sediments than in situ closed chambers, since the former experiment imitates the natural conditions where continuous interstitial flow occurs in the sediments. We also demonstrated that fine sediments (<5 mm) substantially contribute to heterotrophic respiration in the studied gravel-bed river.
Phytobenthic diatoms and macrophyte communities respond differently to stressors in aquatic environments. For the assessment of the ecological status of rivers in Slovenia, we use several indices, including the River Macrophyte Index (RMI) and Trophic index (TI) based on macrophyte and phytobenthic diatoms communities, respectively. In the present study, we examined the relationships between nutrient variables and values of RMI and TI using varied stressor gradient lengths. We also aimed to explain the variability of macrophyte and diatom communities with different stressors, namely nutrients and land cover variables and their combinations. The relationships of RMI and TI with nutrient variables varied significantly and were affected by the length of the stressor gradient. We obtained a stronger relationship between the RMI and total phosphorous at an approximately <0.3-mg/L annual mean value, while, for the relationships with the TI, the values were significant at bigger gradient lengths. The greatest share of variability in the macrophyte and diatom community was explained by the combination of land use and nutrient variables and the lowest share by phosphorus and nitrogen variables. When we applied a composite stressor gradient, it explained a similar share of the variability of both macrophyte and diatom communities (up to 26%). A principal component analysis (PCA) based on land use and nutrient stressor gradient revealed that the relationship between RMI EQR and PCA1 that represents intensive agriculture depends on the length of the gradient. The relationship was stronger for shorter gradients at lower values and decreased as the gradient extended towards higher values. Both tested assessment methods showed that macrophyte communities are more sensitive to shorter stressor gradients of lower values, whereas diatom communities are more sensitive to longer stressor gradient and higher values of the stressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.