The structure of the photosynthetic reaction center (RC) from Rhodopseudomonas viridis is known to high resolution. It contains a firmly bound tetraheme cytochrome from which electrons are donated to a special pair (P) of bacteriochlorophylls, which is photooxidized upon absorption of light. Tyrosine at position 162 of the L-subunit of the reaction center (L 162 Y) is a highly conserved residue positioned halfway between P and the proximal heme group (c-559) of the cytochrome. By specific mutagenesis this residue was exchanged against the amino acids phenylalanine (F), glycine (G), methionine (M), leucine (L), tryptophan (W), threonine (T), and histidine (H). All mutants were expressed in Rps. viridis using a recently established transformation system [Laussermair & Oesterhelt (1992) EMBO J. 11, 777-783]. They were shown biochemically to synthesize all four subunits of the RC (cytochrome, subunits L, M, and H) and to assemble them correctly into the membrane. The structures of two mutants (L 162 F and L 162 T) were determined and found not to differ significantly from the wild-type structure. All mutants grew photosynthetically. The absorption spectrum of all the mutants is the same as in WT, but the redox potential of P and of c-559 was changed by the mutations. The kinetics of electron transfer from the heme group to the special pair were measured in chromatophores by flash absorption. As found earlier in the wild type (Y) several exponential components were needed to fit the data.(ABSTRACT TRUNCATED AT 250 WORDS)
Femtosecond spectroscopy in combination with site-directed mutagenesis has been used to study the dynamics of primary electron transfer in native and 12 mutated reaction centers of Blastochloris (B) (formerly called Rhodopseudomonas) viridis. The decay times of the first excited state P* vary at room temperature between of 0.6 and 50 ps, and at low temperatures between 0.25 and 90 ps. These changes in time constants are discussed within the scope of nonadiabatic electron transfer theory using different models: 1) If the mutation is assumed to predominantly influence the energetics of the primary electron transfer intermediates, the analysis of the room temperature data for the first electron transfer step to the intermediate P(+)B(A)(-) yields a reorganization energy lambda = 600 +/- 200 cm(-1) and a free energy gap Delta G ranging from -600 cm(-1) to 800 cm(-1). However, this analysis fails to describe the temperature dependence of the reaction rates. 2) A more realistic description of the temperature dependence of the primary electron transfer requires different values for the energetics and specific variations of the electronic coupling upon mutation. Apparently the mutations also lead to pronounced changes in the electronic coupling, which may even dominate the change in the reaction rate. One main message of the paper is that a simple relationship between mutation and a change in one reaction parameter cannot be given and that at the very least the electronic coupling is changed upon mutation.
Femtosecond spectroscopy in combination with site-directed mutagenesis was used to study the influence of histidine L153 in primary electron transfer in the reaction center of Rhodopseudomonas viridis. Histidine was replaced by cysteine, glutamate, or leucine. The exchange to cysteine did not lead to significant changes in the primary reaction dynamics. In the case of the glutamate mutation, the decay of the excited electronic level of the special pair P* is slowed by a factor of 3. The exchange to leucine caused the incorporation of a bacteriopheophytin b instead of a bacteriochlorophyll b molecule at the BA site. As a consequence of this chromophore exchange, the energy level of the electron transfer state P+BA- is lowered to such an extent that repopulation from the next electron transfer intermediate state P+HA- takes place, resulting in a long-lasting P+BA- population. The observed differences in time constants are discussed in the scope of nonadiabatic electron transfer theory considering the influence of the amino acids at position L153 and the chromophore exchange on the energy level of the intermediate state P+BA-. The results show that the high efficiency of primary electron transfer is reduced substantially, if the energy level of P+BA- is lowered or raised by several hundred wave numbers.
Electron transfer from the tetraheme cytochrome c to the special pair of bacteriochlorophylls (P) has been studied by flash absorption spectroscopy in reaction centers isolated from seven strains of the photosynthetic purple bacterium Rhodopseudomonas viridis, where the residue L162, located between the proximal heme c-559 and P, is Y (wild type), F, W, G, M, T, or L. Measurements were performed between 294 K and 8 K, under redox conditions in which the two high-potential hemes of the cytochrome were chemically reduced. At room temperature, the kinetics of P+ reduction include two phases in all of the strains: a dominant very fast phase (VF), and a minor fast phase (F). The VF phase has the following t(1/2): 90 ns (M), 130 ns (W), 135 ns (F), 189 ns (Y; wild type), 200 ns (G), 390 ns (L), and 430 ns (T). These data show that electron transfer is fast whatever the nature of the amino acid at position L162. The amplitudes of both phases decrease suddenly around 200 K in Y, F, and W. The effect of temperature on the extent of fast phases is different in mutants G, M, L, and T, in which electron transfer from c-559 to P+ takes place at cryogenic temperatures in a substantial fraction of the reaction centers (T, 48%; G, 38%; L, 23%, at 40 K; and M, 28%, at 60 K), producing a stable charge separated state. In these nonaromatic mutants the rate of VF electron transfer from cytochrome to P+ is nearly temperature-independent between 294 K and 8 K, remaining very fast at very low temperatures (123 ns at 60 K for M; 251 ns at 40 K for L; 190 ns at 8 K for G, and 458 ns at 8 K for T). In all cases, a decrease in amplitudes of the fast phases is paralleled by an increase in very slow reduction of P+, presumably by back-reaction with Q(A)-. The significance of these results is discussed in relation to electron transfer theories and to freezing at low temperatures of cytochrome structural reorganization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.