We introduce a high-performance hyperspectral camera based on the Fouriertransform approach, where the two delayed images are generated by the Translating-Wedge-Based Identical Pulses eNcoding System (TWINS) [Opt. Lett. 37, 3027 (2012)], a commonpath birefringent interferometer that combines compactness, intrinsic interferometric delay precision, long-term stability and insensitivity to vibrations. In our imaging system, TWINS is employed as a time-scanning interferometer and generates high-contrast interferograms at the single-pixel level. The camera exhibits high throughput and provides hyperspectral images with spectral background level of −30dB and resolution of 3 THz in the visible spectral range. We show high-quality spectral measurements of absolute reflectance, fluorescence and transmission of artistic objects with various lateral sizes.
We introduce a wide field hyperspectral microscope using the Fourier-transform approach. The interferometer is based on the Translating-Wedge-Based Identical Pulses eNcoding System (TWINS) [Opt. Lett. 37, 3027 (2012)], a common-path birefringent interferometer which combines compactness, intrinsic interferometric delay precision, long-term stability and insensitivity to vibrations. We describe three different implementations of our system: two prototypes designed to test different optical schemes and an add-on for a commercial microscope. We show high-quality spectral microscopy of the fluorescence from stained cells and powders of inorganic pigments, demonstrating that the device is suited to biology and materials science. We demonstrate the acquisition of a 1Mpixel hyperspectral image in 75 seconds in the spectral range from 400 to 1100 nm. We also introduce an acquisition method which synthesizes a tunable spectral filter, providing band-passed images by the measurement of only two maps.
By combining UV transient absorption spectroscopy with sub-30-fs temporal resolution and CASPT2/MM calculations, we present a complete description of the primary photoinduced processes in solvated tryptophan. Our results shed new light on the role of the solvent in the relaxation dynamics of tryptophan. We unveil two consecutive coherent population transfer events involving the lowest two singlet excited states: a sub-50-fs nonadiabatic L a → L b transfer through a conical intersection and a subsequent 220 fs reverse L b → L a transfer due to solvent-assisted adiabatic stabilization of the L a state. Vibrational fingerprints in the transient absorption spectra provide compelling evidence of a vibronic coherence established between the two excited states from the earliest times after photoexcitation and lasting until the back-transfer to L a is complete. The demonstration of response to the environment as a driver of coherent population dynamics among the excited states of tryptophan closes the long debate on its solvent-assisted relaxation mechanisms and extends its application as a local probe of protein dynamics to the ultrafast time scales.
Emitters for organic light‐emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) require small singlet (S1)‐triplet (T1) energy gaps as well as fast intersystem crossing (ISC) transitions. These transitions can be mediated by vibronic mixing with higher excited states Sn and Tn (n=2, 3, 4, …). For a prototypical TADF emitter consisting of a triarylamine and a dicyanobenzene moiety (TAA‐DCN) it is shown that these higher states can be located energetically by time‐resolved near‐infrared (NIR) spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.