It is generally believed that patients with primary generalized epilepsy have normal cognition and neuroimaging studies. We have previously shown that patients with juvenile myoclonic epilepsy (JME) have impaired visual working memory. In this study we examined relative regional changes in 18FDG uptake during a visual working memory paradigm in patients with JME. At rest, there were regional decreases in relative glucose uptake compared to controls. Unlike control subjects, increased activity in the dorsolateral prefrontal cortex was not found during the working memory task. Other regions with increased uptake in controls, such as premotor cortex and basal frontal cortex, also showed no increases, whereas medical temporal structures appeared to play a role in JME but not in control subjects' task performance. The data suggest that JME, a type of primary generalized epilepsy, may suffer from cortical disorganization that affects both the epileptogenic potential and frontal lobe cognitive functioning.
Summary:Purpose: We performed this study to determine whether significant head trauma in human adults can result in hippocampal cell loss, particularly in hilar (polymorph) and CA3 neurons, similar to that observed in animal models of traumatic brain injury. We examined the incidence of hippocampal pathology and its relation to temporal neocortical pathology, neuronal reorganization, and other variables.Methods: Twenty-one of 200 sequential temporal lobectomies had only trauma as a risk factor for epilepsy. Tissue specimens from temporal neocortex and hippocampus were stained with glial fibrillary acidic protein (GFAP) and hematoxylin and eosin (H&E). Eleven hippocampal specimens had additional analysis of neuronal distributions by using cresyl violet and immunolabeling of a neuron-specific nuclear protein .Results: The median age at onset of trauma was 19 years, the median time between trauma and onset of seizures was 2 years, and the median epilepsy duration was 16 years. The length of the latent period was inversely related to the age at the time of trauma (r = 0.75; Spearman). The neocortex showed gliosis in all specimens, with hemosiderosis (n = 8) or heterotopias (n = 6) in some, a distribution differing from chance (p = 0.02; Fisher). Hippocampal neuronal loss was found in 94% of specimens, and all of these had cell loss in the polymorph (hilar) region of the dentate gyrus. Hilar cell loss ranged from mild, when cell loss was confined to the hilus, to severe, when cell loss extended into CA3 and CA1. Some degree of mossy fiber sprouting was found in the dentate gyrus of all 10 specimens in which it was evaluated. Granule cell dispersion (n = 4) was seen only in specimens with moderate to severe neuronal loss.Conclusions: Neocortical pathology was universally present after trauma. Neuronal loss in the hilar region was the most consistent finding in the hippocampal formation, similar to that found in the fluid-percussion model of traumatic head injury. These findings support the idea that head trauma can induce hippocampal epilepsy in humans in the absence of other known risk factors.
Immunogold electron microscopy was used to examine human brain resections to localize the GLUT1 glucose transporter. The tissue examined was obtained from a patient undergoing surgery for treatment of seizures, and the capillary profiles examined had characteristics identical to those described previously for active, epileptogenic sites (confirmed by EEG analyses). A rabbit polyclonal antiserum to the full-length human erythrocyte glucose transporter (GLUT1) was labeled with 10-nm gold particle-secondary antibody conjugates and localized immunoreactive GLUT1 molecules in human brain capillary endothelia, with < 0.25% of the particles beyond the capillary profile. Erythrocyte membranes were also highly immunoreactive, whereas macrophage membranes were GLUT1-negative. The number of immunoreactive sites per capillary profile was observed to be 10-fold greater in humans than in previous studies of rat and rabbit brain capillaries. In addition, half of the total number of immunoreactive gold particles were localized to the luminal capillary membrane. We suggest that the blood-brain barrier GLUT1 glucose transporter is up-regulated in seizures, and this elevated transporter activity is characterized by increased GLUT1 transporters, particularly on the luminal capillary membranes. In addition, acute modulation of glucose transporter activity is presumed to involve translocation of GLUT1 from cytoplasmic to luminal membrane sites, demonstrable with quantitative immunogold electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.