Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D) cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically accurate and low cost cancer models for preclinical screening and testing of new drug candidates before moving to expensive and time-consuming animal models. Here, we provide a comprehensive overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation tools of targeted therapies, focusing on their applicability in cancer research. Examples of the applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed.
The efficacy of antimitotics is limited by slippage, whereby treated cells arrested in mitosis exit mitosis without cell division and, eventually, escape apoptosis, constituting a serious resistance mechanism to antimitotics. Strategies to overcome slippage should potentiate the cancer cell killing activity of these antimitotics. Such strategies should accelerate cell death in mitosis before slippage. Here, we undertook a mechanistic analysis to test whether the apoptosis activator Navitoclax potentiates apoptosis triggered by the antimitotic BI2536, a potent inhibitor of Polo-like kinase 1 (PLK1) with the goal of overcoming slippage. We found that cancer cells in 2D cultures treated with BI2536 alone accumulate in mitosis, but a significant fraction of arrested cells undergo slippage and survive. Remarkably, combining BI2536 with Navitoclax dramatically reduces slippage, shifting the cell fate to accelerated death in mitosis. The results are confirmed in 3D spheroids, a preclinical system that mimics in vivo tumor drug responses. Importantly, in 3D spheroids, the effect of the BI2536/Navitoclax combination requires a lower therapeutic dosage of each drug, underlying its potential to improve the therapeutic index. Our results highlight the relevance of apoptosis potentiators to circumvent slippage associated with antimitotics. The combination of BI2536 with Navitoclax shows in vitro synergy/additive effect, which warrants further clinical research.
Introdução: As infecções respiratórias agudas (IRA) são as causas mais comuns de morbimortalidade na infância. O Boletim de Silverman-Andersen (BSA) é um instrumento utilizado na prática clínica pediátrica para avaliar cinco aspectos do desconforto respiratório e quantificá-los. Objetivo: Comparar a efetividade do tratamento fisioterapêutico com 1 ou 2 sessões diárias durante 2 dias consecutivos, em crianças entre 0 e 3 anos hospitalizadas com IRA, utilizando o BSA. Métodos: Trata-se de um estudo clínico cego realizado com 23 crianças que foram separadas em dois grupos aleatoriamente: o G1, composto por crianças que apenas foram submetidas ao tratamento oferecido pelo hospital e o G2 que, além dessa mesma intervenção, foram submetidas a um segundo atendimento padronizado. Os resultados foram analisados através do programa Prisma versão 5.0. Resultados: Nas análises dos dados da reavaliação de ambos os grupos, foi evidenciada diferença estatisticamente significativa nos escores do Boletim de Silverman Andersen (p = 0,0114). Conclusão: Observou-se que houve melhora do esforço respiratório e das condições clínicas em curto prazo das crianças submetidas a dois atendimentos fisioterapêuticos diários.Palavras-chave: Fisioterapia, criança, doenças respiratórias, hospitais, reabilitação.
Cationic anticancer peptides have exhibited potent anti-proliferative and anti-inflammatory effects in neoplastic illness conditions. LyeTx I-b is a synthetic peptide derived from Lycosa erythrognatha spider venom that previously showed antibiotic activity in vitro and in vivo. This study focused on the effects of LyeTxI-b on a 4T1 mouse mammary carcinoma model. Mice with a palpable tumor in the left flank were subcutaneously or intratumorally injected with LyeTx I-b (5 mg/kg), which significantly decreased the tumor volume and metastatic nodules. Histological analyses showed a large necrotic area in treated primary tumors compared to the control. LyeTxI-b reduced tumor growth and lung metastasis in the 4T1 mouse mammary carcinoma model with no signs of toxicity in healthy or cancerous mice. The mechanism of action of LyeTx I-b on the 4T1 mouse mammary carcinoma model was evaluated in vitro and is associated with induction of apoptosis and cell proliferation inhibition. Furthermore, LyeTx I-b seems to be an efficient regulator of the 4T1 tumor microenvironment by modulating several cytokines, such as TGF-β, TNF-α, IL-1β, IL-6, and IL-10, in primary tumor and lung, spleen, and brain. LyeTx I-b also plays a role in leukocytes rolling and adhesion into spinal cord microcirculation and in the number of circulating leukocytes. These data suggest a potent antineoplastic efficacy ofLyeTx I-b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.