Neural activity is often low dimensional and dominated by only a few prominent neural covariation patterns. It has been hypothesised that these covariation patterns could form the building blocks used for fast and flexible motor control. Supporting this idea, recent experiments have shown that monkeys can learn to adapt their neural activity in motor cortex on a timescale of minutes, given that the change lies within the original low-dimensional subspace, also called neural manifold. However, the neural mechanism underlying this within-manifold adaptation remains unknown. Here, we show in a computational model that modification of recurrent weights, driven by a learned feedback signal, can account for the observed behavioural difference between within- and outside-manifold learning. Our findings give a new perspective, showing that recurrent weight changes do not necessarily lead to change in the neural manifold. On the contrary, successful learning is naturally constrained to a common subspace.
Animals rapidly adapt their movements to external perturbations, a process paralleled by changes in neural activity in the motor cortex. Experimental studies suggest that these changes originate from altered inputs (Hinput) rather than from changes in local connectivity (Hlocal), as neural covariance is largely preserved during adaptation. Since measuring synaptic changes in vivo remains very challenging, we used a modular recurrent neural network to qualitatively test this interpretation. As expected, Hinput resulted in small activity changes and largely preserved covariance. Surprisingly given the presumed dependence of stable covariance on preserved circuit connectivity, Hlocal led to only slightly larger changes in activity and covariance, still within the range of experimental recordings. This similarity is due to Hlocal only requiring small, correlated connectivity changes for successful adaptation. Simulations of tasks that impose increasingly larger behavioural changes revealed a growing difference between Hinput and Hlocal, which could be exploited when designing future experiments.
Neural activity is often low dimensional and dominated by only a few prominent neural covariation patterns. It has been hypothesised that these covariation patterns could form the building blocks used for fast and flexible motor control. Supporting this idea, recent experiments have shown that monkeys can learn to adapt their neural activity in motor cortex on a timescale of minutes, given that the change lies within the original low-dimensional subspace, also called neural manifold. However, the neural mechanism underlying this within-manifold adaptation remains unknown. Here, we show in a computational model that modification of recurrent weights, driven by a learned feedback signal, can account for the observed behavioural difference between within-and outside-manifold learning. Our findings give a new perspective, showing that recurrent weight changes do not necessarily lead to change in the neural manifold. On the contrary, successful learning is naturally constrained to a common subspace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.