Este artigo descreve a criação e disponibilização da base de dados de evolução de artigos da Wikipédia. A base é caracterizada por atributos de qualidades e a classe de qualidade dos artigos em determinada data, sendo cada instância entendida como revisão. Esta base pode ser utilizada para estudos relacionados com classificação automática de qualidade que considerem o histórico de revisão do artigo e entendimento de como o conteúdo e qualidade dos artigos evoluem ao longo do tempo nessa plataforma colaborativa.
The way Complex Machine Learning (ML) models generate their results is not fully understood, including by very knowledgeable users. If users cannot interpret or trust the predictions generated by the model, they will not use them. Furthermore, the human role is often not properly considered in the development of ML systems. In this article, we present the design, implementation and evaluation of Explain-ML, an Interactive Machine Learning (IML) system for Explainable Machine Learning that follows the principles of Human-Centered Machine Learning (HCML). We assess the user experience with the Explain-ML interpretability strategies, contrasting them with the analysis of how other IML tools address the IML principles. To do so, we have conducted an analysis of the results of the evaluation of Explain-ML with potential users in light of principles for IML systems design and a systematic inspection of three other tools – Rulematrix, Explanation Explorer and ATMSeer – using the Semiotic Inspection Method (SIM). Our results generated positive indicators regarding Explain-ML and the process that guided its development. Our analyses also highlighted aspects of the IML principles that are relevant from the users’ perspective. By contrasting the results with Explain-ML and SIM inspections of the other tools we were able to identify common interpretability strategies. We believe that the results reported in this work contribute to the understanding and consolidation of the IML principles, ultimately advancing the knowledge in HCML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.