The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C‐terminally truncated catalytic and two regulatory subunits has been determined at 3.1 Å resolution (Protein Data Bank code: 1JWH). In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C‐terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit as a docking partner for various protein kinases. Furthermore it shows an inter‐domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.
Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure. The catalytic alpha subunits are distantly related to the CMGC subfamily of kinases, such as the Cdk kinases. There are some peculiarities associated with protein kinase CK2, which are not found with most other protein kinases: (i) the enzyme is constitutively active, (ii) it can use ATP and GTP and (iii) it is found elevated in most tumors investigated and rapidly proliferating tissues. With the elucidation of the structure of the catalytic subunit, it was possible to explain why the enzyme is constitutively active [1] and why it can bind GTP [2]. Considerable information on the potential roles of CK2 in various disease processes including cancer has been gained in recent years, and the present review may help to further elucidate its aberrant role in many disease states. Its peculiar structural features [3-9] may be advantageous in designing tailor-made compounds with the possibility to specifically target this protein kinase [10]. Since not all the aspects of what has been published on CK2 can be covered in this review, we would like to recommend the following reviews; (i) for general information on CK2 [11-18] and (ii) with a focus on aberrant CK2 [19-22].
A systematic analysis reveals that out of 20 protein kinases examined, specific for either Ser/Thr or Tyr, the majority are extremely sensitive to staurosporine, with IC,,, values in the low nanomolar range. A few of them however, notably protein kinases CKI and CK2, mitogen-activated protein (MAP) kinase and protein-tyrosine kinase CSK, are relatively refractory to staurosporine inhibition, exhibiting IC,,, values in the micromolar range. With all protein kinases tested. namely PKA, CKI, CK2, MAP kinase (ERK-I), c-Fgr, Lyn, CSK and TPK-IIB/p38.'", staurosporine inhibition was competitive with respect to ATP, regardless of its inhibitory power. In contrast, either uncompetitive or noncompetitive kinetics of inhibition with respect to the phosphoacceptor substrate were exhibited by Ser/Thr and Tyr-specific protein kinases, respectively, consistent with a different mechanism of catalysis by these two sub-families of kinases. Computer modeling based on PKA crystal structure in conjunction with sequence analysis suggest that the low sensitivity to staurosporine of CK2 may be accounted for by the bulky nature of three residues, Va166, P h e l l 3 and Ile174 which are homologous to PKA Ala70, Met120 and Thr183, respectively. In contrast these PKA residues are either conserved or replaced by smaller ones in protein kinases highly sensitive to staurosporine inhibition. On the other hand, His160 which is homologous to PKA Glu170, appears to be responsible for the unique behaviour of CK2 with respect to a staurosporine derivative (CGP44171A) bearing a negatively charged benzoyl substituent: while CGP44171A is 10-100-fold less effective than staurosporine against PKA and most of the other protein kinases tested, it is actually more effective than staurosporine for CK2 inhibition, but it looses part of its efficacy if it is tested on a CK2 mutant (H160D) in which His160 has been replaced by Asp.It can be concluded from these data that the catalytic sites of protein kinases are divergent enough as to allow a competitive inhibitor like staurosporine to be fairly selective, a feature that can be enhanced by suitable modifications designed based on the structure of the catalytic site of the kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.