Background: When conducting research with American Indian tribes, informed consent beyond conventional institutional review board (IRB) review is needed because of the potential for adverse consequences at a community or governmental level that are unrecognized by academic researchers.Objectives: In this article, we review sovereignty, research ethics, and data-sharing considerations when doing community-based participatory health–related or natural-resource–related research with American Indian nations and present a model material and data-sharing agreement that meets tribal and university requirements.Discussion: Only tribal nations themselves can identify potential adverse outcomes, and they can do this only if they understand the assumptions and methods of the proposed research. Tribes must be truly equal partners in study design, data collection, interpretation, and publication. Advances in protection of intellectual property rights (IPR) are also applicable to IRB reviews, as are principles of sovereignty and indigenous rights, all of which affect data ownership and control.Conclusions: Academic researchers engaged in tribal projects should become familiar with all three areas: sovereignty, ethics and informed consent, and IPR. We recommend developing an agreement with tribal partners that reflects both health-related IRB and natural-resource–related IPR considerations.
EPA's Risk Assessment Guidance for Superfund (RAGS) and later documents provide guidance for estimating exposures received from suburban and agricultural activity patterns and lifestyles. However, these methods are not suitable for typical tribal communities whose members pursue, at least in part, traditional lifestyles. These lifestyles are derived from a long association with all of the resources in a particular region. We interviewed 35 members of a Columbia River Basin tribe to develop a lifestyle-based subsistence exposure scenario that represents a midrange exposure that a traditional tribal member would receive. This scenario provides a way to partially satisfy Executive Order 12,898 on environmental justice, which requires a specific evaluation of impacts from federal actions to peoples with subsistence diets. Because a subsistence diet is only a portion of what is important to a traditional lifestyle, we also used information obtained from the interviews to identify parameters for evaluating impacts to environmental and sociocultural quality of life.
Summary 1. The impact of flash flooding on microbial distribution and biogeochemistry was investigated in the parafluvial zone (the part of the active channel lateral to the surface stream) of Sycamore Creek, a Sonoran Desert stream in central Arizona. 2. It was hypothesized that subsurface bacteria were dependent on the import of algal‐derived organic matter from the surface stream, and it was therefore predicted that microbial numbers and rates of microbially mediated processes would be highest at locations of surface to subsurface hydrologic exchange and at times when algal biomass was high. 3. Prior to a flash flood on 19 July 1994, chlorophyll a was high (≈ 400 mg m–2) in the surface stream and microbial numbers were highest at the stream–parafluvial interface and declined along parafluvial flowpaths, supporting the hypothesized algal–bacterial linkage. Immediately following the flash flood, chlorophyll a was low (≈ 7 mg m–2), and microbial numbers were reduced at the stream–parafluvial interface. 4. Counter to expectations, parafluvial functioning (in terms of nitrate production and dissolved oxygen decline along flowpaths) re‐established immediately after the flood receded. Therefore, material other than algal exudates supported parafluvial metabolism immediately postflood, and terrestrially derived dissolved organic matter is the likely source. 5. Algae in the surface stream recovered quickly following flooding, but recovery of parafluvial bacteria lagged somewhat behind. These results highlight the importance of surface–subsurface interaction to stream ecosystem functioning and show that the nature of these interactions changes substantially in successional time.
BackgroundPredictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials.MethodsWe generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric) was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials.ResultsWe found several important attributes that contribute to the 24 hours post-fertilization (hpf) mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of nanomaterials. Sample prediction models can be found at http://neiminer.i-a-i.com/nei_models.ConclusionThe EZ Metric-based data mining approach has been shown to have predictive power. The results provide valuable insights into the modeling and understanding of nanomaterial exposure effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.