Boras et al. demonstrate that Skap2, via interaction with WASp, regulates actin polymerization and binding of talin-1 and kindlin-3 to the β2 integrin, thereby being indispensable for β2 integrin activation and neutrophil recruitment.
Fast tacrolimus metabolism is linked to inferior outcomes such as rejection and lower renal function after kidney transplantation. Renal calcineurin-inhibitor toxicity is a common adverse effect of tacrolimus therapy. The present contribution hypothesized that tacrolimus-induced nephrotoxicity is related to a low concentration/dose (C/D) ratio. We analyzed renal tubular epithelial cell cultures and 55 consecutive kidney transplant biopsy samples with tacrolimus-induced toxicity, the C/D ratio, C0, C2, and C4 Tac levels, pulse wave velocity analyses, and sublingual endothelial glycocalyx dimensions in the selected kidney transplant patients. A low C/D ratio (C/D ratio < 1.05 ng/mL×1/mg) was linked with higher C2 tacrolimus blood concentrations (19.2 ± 8.7 µg/L vs. 12.2 ± 5.2 µg/L respectively; p = 0.001) and higher degrees of nephrotoxicity despite comparable trough levels (6.3 ± 2.4 µg/L vs. 6.6 ± 2.2 µg/L respectively; p = 0.669). However, the tacrolimus metabolism rate did not affect the pulse wave velocity or glycocalyx in patients. In renal tubular epithelial cells exposed to tacrolimus according to a fast metabolism pharmacokinetic profile it led to reduced viability and increased Fn14 expression. We conclude from our data that the C/D ratio may be an appropriate tool for identifying patients at risk of developing calcineurin-inhibitor toxicity.
PD-1 positivity of tumor-infiltrating lymphocytes was associated with adverse pathological criteria and independent prognostication of worse survival outcomes. PD-L1 positivity of tumor cells was an independent prognosticator of favorable survival outcomes in cases of organ confined disease.
The reduced number of circulating stem/progenitor cells that is found in chronic kidney disease (CKD) patients may contribute to impaired angiogenic repair and decreased capillary density in the heart. Cell therapy with bone marrow-derived cells (BMDCs) has been shown to induce positive effects on the microvasculature and cardiac function, most likely due to secretion of growth factors and cytokines, all of which are present in the conditioned medium (CM); however, this is controversial. Here we showed that treatment with BMDC or CM restored vascular density and decreased the extent of fibrosis in a rat model of CKD, the 5/6 nephrectomy. Engraftment and differentiation of exogenous BMDCs could not be detected. Yet CM led to the mobilization and infiltration of endogenous circulating cells into the heart. Cell recruitment was facilitated by the local expression of pro-inflammatory factors such as the macrophage chemoattractant protein-1, interleukin-6, and endothelial adhesion molecules. Consistently, in vitro assays showed that CM increased endothelial adhesiveness to circulating cells by upregulating the expression of adhesion molecules, and stimulated angiogenesis/endothelial tube formation. Overall, our results suggest that both treatments exert vasculoprotective effects on the heart of uremic rats by stimulating endogenous repair mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.