We describe methods with enhanced power and specificity to identify genes targeted by somatic copy-number alterations (SCNAs) that drive cancer growth. By separating SCNA profiles into underlying arm-level and focal alterations, we improve the estimation of background rates for each category. We additionally describe a probabilistic method for defining the boundaries of selected-for SCNA regions with user-defined confidence. Here we detail this revised computational approach, GISTIC2.0, and validate its performance in real and simulated datasets.
Chemical reaction of 1,4-benzoquinone with GSH gives rise to several multisubstituted hydroquinone (HQ)-GSH conjugates, each of which causes renal proximal tubular necrosis when administered to male Sprague-Dawley rats. In addition, HQ has recently been reported to be nephrocarcinogenic following long-term exposure in male rats. Since neither the mechanism nor the extent of HQ oxidation and thioether formation in vivo is known, we have assessed both the qualitative and quantitative significance of HQ-thioether formation in vivo and in vitro. HQ (1.8 mmol/kg, ip) was administered to AT-125-pretreated male Sprague-Dawley rats, and bile and urine samples were analyzed with a HPLC-coulometric electrode array system (CEAS) and by liquid chromatography (LC)/continuous-flow fast atom bombardment (CF-FAB) mass spectroscopy. Five S-conjugates of hydroquinone were identified in bile, and one S-conjugate was identified in urine. The major biliary S-conjugate identified was 2-glutathion-S-ylhydroquinone [2-(GSyl)HQ] (18.9 +/- 2.7 mumol). Additional biliary metabolites were 2,5-diglutathion-S-ylhydroquinone [2,5-(diGSyl)HQ] (2.2 +/- 0.6 mumol), 2,6-diglutathion-S-ylhydroquinone [2,6-(diGSyl)HQ] (0.7 +/- 0.3 mumol),2,3,5-triglutathion-S-ylhydroquinone [2,3,5-(triGSyl)HQ] (1.2 +/- 0.1 mumol), and 2-(cystein-S-ylglycyl)hydroquinone. 2-(N-Acetylcystein-S-yl)HQ was the only urinary thioether metabolite (11.4 +/- 3.6 mumol) identified. The quantity of S-conjugates excreted in urine and bile within 4 h of HQ administration [34.3 +/- 4.5 mumol (4.3 +/- 1.1% of dose)] appears sufficient to propose a role for such metabolites in HQ-mediated nephrotoxicity and nephrocarcinogenicity. Rat liver microsomes catalyzed the NADPH-dependent oxidation of HQ (300 microM), in the presence of GSH, to form 2-(GSyl)HQ,2,5-(diGSyl)-HQ, and 2,6-(diGSyl)HQ. A fraction of the microsomal oxidation of HQ appears to be catalyzed by cytochrome(s) P450, although the exact amount remains unclear. 2-(GSyl)HQ,2,5-(diGSyl)-HQ, and 2,6-(diGSyl)HQ (300 microM) also underwent NADPH-dependent oxidation and GSH conjugation in liver microsomes. The extent of the nonenzymatic oxidation of HQ and its GSH conjugates correlated, approximately, with their half-wave oxidation potentials.
In this report we characterized the transcriptional regulation of the rat mdr1b gene by xenobiotics. The expression of this gene was increased in primary rat hepatocytes and in the H4-II-E hepatoma cell line by exposure to carcinogens such as aflatoxin B1, N-acetoxy-2-acetylaminofluorene, and methyl methanesulfonate. Nuclear run-on experiments indicated that the higher steady-state levels of mdr1b mRNA were due to an increase in transcription. The 5'-flanking region of the mdr1b gene was isolated, sequenced, and functionally characterized in transient and stable transfection assays. A single transcription start site was identified for this gene; no alternate start sites were used after induction with aflatoxin B1. Deletion analysis of this promoter demonstrated that the sequence between nt -214 and -178 was critical for basal promoter activity. This region did not contain any consensus-binding sites for previously identified transcription factors. A negative regulatory region was also identified between nt -940 and -250. No specific carcinogen-responsive element was identified; the xenobiotic response required a large part of the promoter. These data suggest that the carcinogen induction of mdr1b expression is mediated through sequences that overlap or that are identical to the basal promoter element.
Interactive analysis notebook environments promise to streamline genomics research through interleaving text, multimedia, and executable code into unified, sharable, reproducible “research narratives.” However, current notebook systems require programming knowledge, limiting their wider adoption by the research community. We have developed the GenePattern Notebook environment, www.genepattern-notebook.org, to our knowledge the first system to integrate the dynamic capabilities of notebook systems with an investigator-focused, easy-to-use interface that provides access to hundreds of genomic tools without the need to write code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.