Many strains of enterotoxigenic Escherichia coli (ETEC) isolated from patients with diarrhoeal disease exhibit CS1 pili on their surfaces. These appendages, which are thought to be important for colonization of the upper intestine, are composed largely of multiple identical protein subunits encoded by cooA. We have sequenced the DNA directly downstream of cooA and identified two open reading frames, cooC and cooD, transcribed in the same direction as cooB and cooA. Following cooD is DNA homologous to an insertion sequence, so cooB, A, C and D appear to encode all the information needed for E. coli K-12 to synthesize CS1 pili. Complementation analysis of mutants cloned in E. coli K-12 and constructed in an ETEC-derived strain indicates that cooC and cooD are not required for stability of the major CS1 pilin protein or for its transport to the periplasm, but, like cooB, both are needed for assembly of cooA into pili.
CS1 is the prototype of a class of pili of enterotoxigenic Escherichia coli (ETEC) associated with diarrheal disease in humans. The genes encoding this pilus are carried on a large plasmid, pCoo. We report the sequence of the complete 98,396-bp plasmid. Like many other virulence plasmids, pCoo is a mosaic consisting of regions derived from multiple sources. Complete and fragmented insertion sequences (IS) make up 24% of the total DNA and are scattered throughout the plasmid. The pCoo DNA between these IS elements has a wide range of G؉C content (35 to 57%), suggesting that these regions have different ancestries. We find that the pCoo plasmid is a cointegrate of two functional replicons, related to R64 and R100, which are joined at a 1,953-bp direct repeat of IS100. Recombination between these repeats in the cointegrate generates the two smaller replicons which coexist with the cointegrate in the culture. Both of the smaller replicons have plasmid stability genes as well as genes that may be important in pathogenesis. Examination by PCR of 17 other unrelated CS1 ETEC strains with a variety of serotypes demonstrated that all contained at least parts of both replicons of pCoo and that strains of the O6 genotype appear to contain a cointegrate very similar to pCoo. The results suggest that this family of CS1-encoding plasmids is evolving rapidly.
Genes encoding one or more Ser/Thr protein kinases have been identified recently in many bacteria, including one (stk) in the human pathogen Streptococcus pyogenes (group A streptococcus [GAS]). We report that in GAS, stk is required to produce disease in a murine myositis model of infection. Using microarray and quantitative reverse transcription-PCR (qRT-PCR) studies, we found that Stk activates genes for virulence factors, osmoregulation, metabolism of ␣-glucans, and fatty acid biosynthesis, as well as genes affecting cell wall synthesis. Confirming these transcription studies, we determined that the stk deletion mutant is more sensitive to osmotic stress and to penicillin than the wild type. We discuss several possible Stk phosphorylation targets that might explain Stk regulation of expression of specific operons and the possible role of Stk in resuscitation from quiescence.
Attachment of enterotoxigenic Escherichia coli to the human gut is considered an important early step in infection that leads to diarrhea. This attachment is mediated by pili, which belong to a limited number of serologically distinguishable types. Many of these pili require the product of rns, or a closely related gene, for their expression. We have located the major promoter for ins and found that although its sequence diverges significantly from a sigma-70 promoter consensus sequence, it is very strong. Transcription of rns is negatively regulated both at a region upstream of this promoter and at a region internal to the rns open reading frame.In addition, rns positively regulates its own transcription, probably by counteracting these two negative effects.
The adherence of enterotoxigenic Escherichia coli (ETEC) to the human small intestine is an important early event in infection. Attachment is thought to be mediated by proteinaceous structures called pili. We have investigated the regulation of expression of the genes encoding CS1 pili found on human ETEC strains and find that there are at least three promoters, P1 and P2, upstream of the coo genes, and P3, downstream of the start of cooB translation. We identified a silencer of transcription which extends over several hundred bases overlapping the cooB open reading frame. This silencer is dependent on the promoter and/or upstream region for its negative effect. The DNA binding protein H-NS is a repressor of coo transcription that acts in the same region as the silencer, so it is possible that H-NS is involved in this silencing. Rns, a member of the AraC family, positively regulates transcription of the coo operon and relieves the silencing of CS1 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.