The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2Bcontaining receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders.
Nicotine is a potent inhibitor of the immune response and is protective against experimental autoimmune encephalomyelitis (EAE). Initial studies suggested that the cholinergic system modulates inflammation via the α7-nicotinic acetylcholine receptor (nAChR) subtype. We recently have shown that effector T cells and myeloid cells constitutively express mRNAs encoding nAChR α9 and β2 subunits and found evidence for immune system roles for non-α7-nAChRs. In the present study, we assessed the effects of nAChR α9 or β2 subunit gene deletion on EAE onset and severity, with or without nicotine treatment. We report again that disease onset is delayed and severity is attenuated in nicotine-treated, wild-type mice, an effect that also is observed in α9 subunit knock-out (KO) mice irrespective of nicotine treatment. On the other hand, β2 KO mice fail to recover from peak measures of disease severity regardless of nicotine treatment, despite retaining sensitivity to nicotine’s attenuation of disease severity. Prior to disease onset, we found significantly less reactive oxygen species production in the CNS of β2 KO mice, elevated proportions of CNS myeloid cells but decreased ratios of CNS macrophages/microglia in α9 or β2 KO mice, and some changes in iNOS, TNF-α and IL-1β mRNA levels in α9 KO and/or β2 KO mice. Our data thus suggest that β2*- and α9*-nAChRs, in addition to α7-nAChRs, play different roles in endogenous and nicotine-dependent modulation of immune functions and could be exploited as therapeutic targets to modulate inflammation and autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.