Pathological changes in scleral glycosaminoglycan (GAG) content and in scleral mechanical properties have been observed in eyes with glaucoma and myopia. The purpose of this study is to investigate the effect of GAG removal on the scleral mechanical properties to better understand the impact of GAG content variations in the pathophysiology of glaucoma and myopia. We measured how the removal of sulphated GAG (s-GAG) affected the hydration, thickness and mechanical properties of the posterior sclera in enucleated eyes of 6–9 month-old pigs. Measurements were made in 4 regions centered on the optic nerve head (ONH) and evaluated under 3 conditions: no treatment (control), after treatment in buffer solution alone, and after treatment in buffer containing chondroitinase ABC (ChABC) to remove s-GAGs. The specimens were mechanically tested by pressure-controlled inflation with full-field deformation mapping using digital image correlation (DIC). The mechanical outcomes described the tissue tensile and viscoelastic behavior. Treatment with buffer alone increased the hydration of the posterior sclera compared to controls, while s-GAG removal caused a further increase in hydration compared to buffer-treated scleras. Buffer-treatment significantly changed the scleral mechanical behavior compared to the control condition, in a manner consistent with an increase in hydration. Specifically, buffer-treatment led to an increase in low-pressure stiffness, hysteresis, and creep rate, and a decrease in high-pressure stiffness. ChABC-treatment on buffer-treated scleras had opposite mechanical effects than buffer-treatment on controls, leading to a decrease in low-pressure stiffness, hysteresis, and creep rate, and an increase in high-pressure stiffness and transition strain. Furthermore, s-GAG digestion dramatically reduced the differences in the mechanical behavior among the 4 quadrants surrounding the ONH as well as the differences between the circumferential and meridional responses compared to the buffer-treated condition. These findings demonstrate a significant effect of s-GAGs on both the stiffness and time-dependent behavior of the sclera. Alterations in s-GAG content may contribute to the altered creep and stiffness of the sclera of myopic and glaucoma eyes.
We characterized the structural and mechanical changes after experimental digestion of sulfated glycosaminoglycans (s-GAGs) in the human posterior sclera, using ultrasound thickness measurements and an inflation test with three-dimensional digital image correlation (3D-DIC). Each scleral specimen was first incubated in a buffer solution to return to full hydration, inflation tested, treated in a buffer solution with chondroitinase ABC (ChABC), then inflation tested again. After each test series, the thickness of eight locations was measured. After enzymatic treatment, the average scleral thickness decreased by 13.3% ( p , 0.001) and there was a stiffer overall stress-strain response ( p , 0.05). The stress-strain response showed a statistically significant increase in the low-pressure stiffness, high-pressure stiffness and hysteresis. Thus, s-GAGs play a measurable role in the mechanical behaviour of the posterior human sclera.
The purpose of this study is to investigate the effects of preconditioning on the deformation response of planar tissues measured by inflation tests. The inflation response of test specimens, including the bovine cornea, bovine and porcine sclera, and human skin, exhibited a negligible evolving deformation response when subjected to repeated pressure loading with recovery periods between cycles. Tissues obtained complete recovery to the reference state, and strain contours across the entire specimen were nearly identical at the maximum pressure of each load cycle. This repeatability was obtained regardless of strain history. These results suggest that negligible permanent change was induced in the microstructure by inflation testing. Additionally, we present data illustrating that a lack of a recovery period can result in an evolving deformation response to repeated loading that is commonly attributed to preconditioning. These results suggest that the commonly observed effects of preconditioning may be avoided by experimental design for planar tissues characterized by long collagen fibers arranged in the plane of the tissue. Specifically, if the test is designed to fully fix the specimen boundary during loading, adequate recovery periods are allowed after each load cycle, and loads are limited to avoid damage, preconditioning effects may be avoided for planar tissues.
Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.
Osteoarthritis (OA) is a degenerative joint disease that is a leading cause of adult pain and disability in Western countries1. Clinically, several structural features of the joint are important in diagnosis, prognosis and evaluation of treatment efficacy, e.g. cartilage volume, homogeneity and joint space narrowing2,3. In animal models of OA, structural features such as bone defects and cartilage changes are commonly investigated using histomorphometry, a technique that uses stereological point counting and manual tracing of regions of interest to extract 3-dimensional (3D) geometrical properties from 2D histology slides. This is time-consuming and subject to inter-observer variations, hence limiting precision 4,5. Therefore, a technique for rapidly imaging joint structures in 3D at high resolution, including articular cartilage and subchondral bone, is currently needed in pre-clinical OA research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.