Background: Hyperglycaemia is associated with poor outcomes from pneumonia, myocardial infarction and stroke, but the effect of blood glucose on outcomes from acute exacerbations of chronic obstructive pulmonary disease (AECOPD) has not been established. Recent UK guidelines do not comment on measurement or control of blood glucose in AECOPD. A study was therefore undertaken to determine the relationship between blood glucose concentrations, length of stay in hospital, and mortality in patients admitted with AECOPD. Methods: Data were retrieved from electronic records for patients admitted with AECOPD with lower respiratory tract infection in 2001-2. The patients were grouped according to blood glucose quartile (group 1, ,6 mmol/l (n = 69); group 2, 6.0-6.9 mmol/l (n = 69); group 3, 7.0-8.9 mmol/l (n = 75); and group 4, .9.0 mmol/l (n = 71)). Results: The relative risk (RR) of death or long inpatient stay was significantly increased in group 3 (RR 1.46, 95% CI 1.05 to 2.02, p = 0.02) and group 4 (RR 1.97, 95% CI 1.33 to 2.92, p,0.0001) compared with group 1. For each 1 mmol/l increase in blood glucose the absolute risk of adverse outcomes increased by 15% (95% CI 4 to 27), p = 0.006. The risk of adverse outcomes increased with increasing hyperglycaemia independent of age, sex, a previous diagnosis of diabetes, and COPD severity. Isolation of multiple pathogens and Staphylococcus aureus from sputum also increased with increasing blood glucose. Conclusion: Increasing blood glucose concentrations are associated with adverse clinical outcomes in patients with AECOPD. Tight control of blood glucose reduces mortality in patients in intensive care or following myocardial infarction. A prospective study is now required to determine whether control of blood glucose can also improve outcomes from AECOPD.
I n 2012, Kidney Disease: Improving Global Outcomes (KDIGO) published a guideline on the classification and management of acute kidney injury (AKI). 1 Since then, new evidence has emerged that has important implications for clinical practice. Large epidemiology studies and risk profiles for AKI have become available in adults and children, such as the AKI-Epidemiologic Prospective Investigation (AKI-EPI) study, 2 the 0by25 Initiative, 3 the Southeast Asia-AKI (SEA-AKI) study, 4 and the Assessment of Worldwide Acute Kidney Injury, Renal Angina, and Epidemiology (AWARE) 5 and Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates (AWAKEN) 6 studies. The effectiveness of the KDIGO recommendations in preventing AKI has been confirmed in small single-center randomized controlled trials (RCTs), such as the Prevention of AKI (PrevAKI) 7 and the
Glucose is not normally present in airways secretions, but appears where hyperglycaemia or epithelial inflammation occur. The detection of glucose cannot reliably be used to detect enteral feed aspiration.
In animals, glucose concentrations are 3-20 times lower in lung lining fluid than in plasma. In humans, glucose concentrations are normally low (<1 mmol/l) in nasal and bronchial fluid, but they are elevated by inflammation or hyperglycemia. Furthermore, elevated bronchial glucose is associated with increased respiratory infection in intensive care patients. Our aims were to estimate normal glucose concentrations in fluid from distal human lung sampled noninvasively and to determine effects of hyperglycemia and lung disease on lung glucose concentrations. Respiratory fluid was sampled as exhaled breath condensate, and glucose was measured by chromatography with pulsed amperometric detection. Dilution corrections, based on conductivity, were applied to estimate respiratory fluid glucose concentrations (breath glucose). We found that breath glucose in healthy volunteers was 0.40 mmol/l (SD 0.24), reproducible, and unaffected by changes in salivary glucose. Breath-to-blood glucose ratio (BBGR) was 0.08 (SD 0.05). Breath glucose increased during experimental hyperglycemia (P < 0.05) and was elevated in diabetic patients without lung disease [1.20 mmol/l (SD 0.69)] in proportion to hyperglycemia [BBGR 0.09 (SD 0.06)]. Breath glucose was elevated more than expected for blood glucose in cystic fibrosis patients [breath 2.04 mmol/l (SD 1.14), BBGR 0.29 (SD 0.17)] and in cystic fibrosis-related diabetes [breath 4.00 mmol/l (SD 2.07), BBGR 0.54 (0.28); P < 0.0001]. These data indicate that 1) this method makes a biologically plausible estimate of respiratory fluid glucose concentration, 2) respiratory fluid glucose concentrations are elevated by hyperglycemia and lung disease, and 3) effects of hyperglycemia and lung disease can be distinguished using the BBGR. This method will support future in vivo investigation of the cause and effect of elevated respiratory fluid glucose in human lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.