Solar thermal water splitting (STWS) produces renewable hydrogen from water using concentrated sunlight. Because it utilizes energy from the entire solar spectrum to directly drive the redox reactions that split water, it can achieve high theoretical solar-to-hydrogen efficiencies. In two-step STWS, a metal oxide is first heated by concentrated sunlight to high temperatures to reduce it and produce O 2 . In the second step, the reduced material is exposed to H 2 O to reoxidize it to its original oxidation state and produce H 2 . Various aspects of this process are reviewed in this work, including the reduction and oxidation chemistries of the active redox materials, the effects of operating conditions, and the solar thermal reactors in which the STWS reactions occur, and a perspective is given on the future optimization of STWS.
Sanitation access in urban areas of low-income countries is provided through unstandardized onsite technologies containing accumulated faecal sludge. The demand for infrastructure to manage faecal sludge is increasing, however, no reliable method exists to estimate total accumulated quantities and qualities (Q&Q) This proposed approach averages out complexities to estimate conditions at a centralized to semi-centralized scale required for management and treatment technology solutions, as opposed to previous approaches evaluating what happens in individual containments. Empirical data, demographic data, and questionnaires were used in Kampala, Uganda to estimate total faecal sludge accumulation in the city, resulting in 270 L/cap∙year for pit latrines and 280 L/cap∙year for septic tanks. Septic tank sludge was more dilute than pit latrine sludge, however, public toilet was not a distinguishing factor. Non-household sources of sludge represent a significant fraction of the total and have different characteristics than household-level sludge. Income level, water connection, black water only, solid waste, number of users, containment volume, emptying frequency, and truck size were predictors of sludge quality. Empirical relationships such as a COD:TS of 1.09 ± 0.56 could be used for more resource efficient sampling campaigns. Based on this approach, spatially available demographic, technical and environmental (SPA-DET) data and statistical relationships between parameters could be used to predict Q&Q of faecal sludge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.