Although the mineral magnetite (Fe3O4) is precipitated biochemically by bacteria, protists, and a variety of animals, it has not been documented previously in human tissue. Using an ultrasensitive superconducting magnetometer in a clean-lab environment, we have detected the presence of ferromagnetic material in a variety of tissues from the human brain. Magnetic particle extracts from solubilized brain tissues examined with high-resolution transmission electron microscopy, electron diffraction, and elemental analyses identify minerals in the magnetitemaghemite family, with many of the crystal morphologies and structures resembling strongly those precipitated by magnetotactic bacteria and fish. These magnetic and high-resolution transmission electron microscopy measurements imply the presence of a minimum of 5 million single-domain crystals per gram for most tissues in the brain and >100 million crystals per gram for pia and dura. Magnetic property data indicate the crystals are in clumps of between 50 and 100 particles. Biogenic magnetite in the human brain may account for high-field saturation effects observed in the Ti and T2 values of magnetic resonance imaging and, perhaps, for a variety of biological effects of low-frequency magnetic fields.
Transgenic mouse lines were generated using either 3.8 or 1.1 kb of 5' upstream flanking sequence from the human blue opsin gene fused to the IacZ or human growth hormone reporter gene. Mice were analyzed for appropriate cell-specific and developmental expression patterns. In 13 independently derived lines of animals, transgene expression was limited to photoreceptor and inner nuclear layer cells. Photoreceptors were identified as cone cells based on morphological criteria and colocalization of transgene expression with the cone-associated marker, peanut agglutinin lectin. More specifically, transgene-positive photoreceptors were identified as short-wave cone cells (S-cones) by using the short-wave color opsin-specific antibody, OS-2. Reporter-gene-positive cells of the inner nuclear layer were identified as bipolar cells based on morphological criteria. Transgenes and the endogenous mouse short-wave opsin gene were transcriptionally coactivated at embryonic day 13. These results show that 3.8 or 1
The levels of reduced and oxidized ascorbates were determined in the normal baboon neural retina and pigment epithelium-choroid. The ascorbate in the neural retina was mainly in the reduced form, while in the pigment epithelium, it existed primarily in the oxidized form. One eye of each of six baboons was exposed to indirect ophthalmoscope light for 30 minutes. Morphologic study showed necrotic photoreceptors, outer segment disorganization, and abnormal pigment epithelial basal infoldings and swollen microvilli. After the light exposure, the values of the reduced ascorbate decreased in both the neural retina and pigment epithelium-choroid of the posterior pole. The possible role of ascorbate as an antioxidant and ascorbate transport into the retina are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.