In this work, the influence of the various substrates on Au nanoisland formation has been studied. Nanostructures were obtained via annealing of thin Au films. In order to determine nanoisland formation mechanisms, correlation between an initial film thickness and temperature of formation, shapes, and dimensions of nanostructures was examined. For the surface morphology studies, nanograin structure, and chemical composition analysis, SEM, HR TEM, and EDS measurements were performed, respectively. Morphology studies showed that the temperature at which nanostructures form varies for different substrates, which indicates high impact of the substrate material on the nanostructure formation. In the case of silicon substrate, besides the phenomenon of spinodal dewetting, the effect of eutectics on the nanostructures was additionally taken into consideration.
This work presents the result of structure investigations of V2O5nanorods grown from thin films and powders prepared by sol-gel method. To examine the best temperature of nanorods crystallization, thin films deposited by spin-coating method on quartz glass or silicon substrates and bulk xerogel powders were annealed at various temperatures ranging from 100°C to 600°C. The structure of the samples was characterized by X-ray diffraction method (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and mass spectroscopy (MS). The rod-like structure of V2O5was obtained at 600°C on both quartz glass and silicon substrates and also from the bulk xerogel. The growth process and the effect of annealing treatment on the nanostructure are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.