The emergence of a large number of bacterial strains resistant to many drugs or disinfectants currently used contributed to the search of new, more effective antimicrobial agents. In the presented paper, we assessed the microbiocidal activity of tri- and tetranuclear oxo-titanium(IV) complexes (TOCs), which were dispersed in the poly(methyl methacrylate) (PMMA) matrix. The TOCs were synthesized in reaction to Ti(OR)4 (R = iPr, iBu) and HO2CR’ (R’ = 4-PhNH2 and 4-PhOH) in a 4:1 molar ratio at room temperature and in Ar atmosphere. The structure of isolated oxo-complexes was confirmed by IR and Raman spectroscopy and mass spectrometry. The antimicrobial activity of the produced composites (PMMA + TOCs) was estimated against Gram-positive (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) and Gram-negative (Escherichia coli ATCC 8739 and E. coli ATCC 25922) bacteria and yeasts of Candida albicans ATCC 10231. All produced composites showed biocidal activity against the bacteria. Composites containing {Ti4O2} cores and the {Ti3O} core stabilized by the 4-hydroxybenzoic ligand showed also high activity against yeasts. The results of investigations carried out suggest that produced (PMMA + TOCs) composites, due to their microbiocidal activity, could find an application in the elimination of microbial contaminations in various fields of our lives.
Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity. TOCs, of the general formula [Ti4O2(OiBu)10(O2CR')2] (R' = PhNH2 (1), C13H9 (2)) were synthesized as a result of the direct reaction of titanium(IV) isobutoxide and 4-aminobenzoic acid or 9-fluorenecarboxylic acid. The microcrystalline powders of (1) and (2), whose structures were confirmed by infrared (IR) and Raman spectroscopy, were dispersed in PCL matrixes. In this way, the composites PCL + nTOCs (n = 5 and 20 wt.%) were produced. The structure and physicochemical properties were determined on the basis of Raman microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electron paramagnetic resonance spectroscopy (EPR), and UV–Vis diffuse reflectance spectroscopy (DRS). The degree of TOCs distribution in the polymer matrix was monitored by scanning electron microscopy (SEM). The addition of TOCs micro grains into the PCL matrix only slightly changed the thermal and mechanical properties of the composite compared to the pure PCL. Among the investigated PCL + TOCs systems, promising antibacterial properties were confirmed for samples of PCL + n(2) (n = 5, 20 wt.%) composites, which simultaneously revealed the best photocatalytic activity in the visible range.
The purpose of this paper is to assess the relationship between the core architecture of titanium(IV)-oxo complexes (TOCs) known as {TiaOb} and their photocatalytic and antimicrobial activity. The following TOCs: [Ti6O4(OiBu)8(O2C13H9)8] · 2(CH3)2CO (1), [Ti6O6(OiBu)6(O2C13H9)6] (2), [Ti6O6(OiBu)6(O2C13H9)6] (3), [Ti3O(OiPr)8(O2C13H9)2] (4), and [Ti4O2(OiBu)10(O2C13H9)2] (5), where -O2C13H9represents 9-fluorene-carboxylate ligands, werestudied to investigate thiseffect. The structures of (1)–(5) were confirmed using single-crystal X-ray diffraction and spectroscopic methods. Since TOCs can be sensitive to hydrolysis processes, their photocatalytic and antimicrobial activity was evaluated after dispersing them in a polymer matrix, which acted as a protective agent against the aquatic environment. The results revealed that the photocatalytic activity of the studied TOCs follows the trend (2) > (5) > (4) > (1) in both the UV and visible ranges. All studied oxo complexes exhibited strong antibacterial activity against Gram-positive strains and weaker activity against Gram-negative strains. The proposed mechanism of the antimicrobial activity of TOCs assumes that this effect is associated with the generation of reactive oxygen species (ROS) on the surface of composite samples. Samples of PMMA + (1) 10 wt.% and PMMA + (5) 20 wt.%, in which both O− and O2− paramagnetic species were observed in the electron paramagnetic spectroscopy (EPR) spectra, demonstrated the highest antimicrobial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.