Beta-dystroglycan (beta-DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of beta-DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of beta-DG, characterizing a functional nuclear localization signal (NLS) in the beta-DG cytoplasmic domain, within amino acids 776-782. The NLS either alone or in the context of the whole beta-DG protein was able to target the heterologous GFP protein to the nucleus, with site-directed mutagenesis indicating that amino acids R(779) and K(780) are critical for NLS functionality. The nuclear transport molecules Importin (Imp)alpha and Impbeta bound with high affinity to the NLS of beta-DG and were found to be essential for NLS-dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of beta-DG may result in cytoplasmic retention, with Y(892) playing a key role. beta-DG thus follows a conventional Impalpha/beta-dependent nuclear import pathway, with important implications for its potential function in the nucleus.
Edited by Ivan SadowskiKeywords: Gpn1 Gpn3 Gpn1-Gpn3 interaction Gpn1-Gpn3 nucleocytoplasmic shuttling Interdependent protein levels shRNA a b s t r a c t Gpn1 and Gpn3 are GTPases individually required for nuclear targeting of RNA polymerase II. Here we show that whereas Gpn3-EYFP distributed between the cytoplasm and cell nucleus, it was mainly cytoplasmic when coexpressed with Gpn1-Flag. Gpn3-Flag retained Gpn1-EYFP in the cytoplasm. However, Gpn3-EYFP/Gpn1-Flag nucleocytoplasmic shuttling was revealed after inhibiting nuclear export with leptomycin B. All Gpn3-EYFP coimmunoprecipitated with Gpn1-Flag, and all Gpn1-EYFP with Gpn3-Flag. Importantly, most endogenous Gpn1 and Gpn3 also associate. Gpn1-Gpn3 interaction was essential to maintain steady-state protein levels of both GTPases. We propose that most Gpn1 and Gpn3 associate, are mobilized, and function as a protein complex. Structured summary of protein interactions:GPN3 physically interacts with GPN1 by anti tag coimmunoprecipitation (1, 2) GPN3 and GPN1 colocalize by fluorescence microscopy (View interaction)
XAB1/Gpn1 is a GTPase that associates with RNA polymerase II (RNAPII) in a GTP-dependent manner. Although XAB1/Gpn1 is essential for nuclear accumulation of RNAPII, the underlying mechanism is not known. A XAB1/Gpn1-EYFP fluorescent protein, like endogenous XAB1/Gpn1, localized to the cytoplasm but it rapidly accumulated in the cell nucleus in the presence of leptomycin B, a chemical inhibitor of the nuclear transport receptor Crm1. Crm1 recognizes short peptides in substrate proteins called nuclear export sequences (NES). Here, we employed site-directed mutagenesis and fluorescence microscopy to assess the functionality of all six putative NESs in XAB1/Gpn1. Mutating five of the six putative NESs did not alter the cytoplasmic localization of XAB1/Gpn1-EYFP. However, a V302A/L304A double mutant XAB1/Gpn1-EYFP protein was clearly accumulated in the cell nucleus, indicating the disruption of a functional NES. This functional XAB1/Gpn1 NES displays all features present in most common and potent NESs, including, in addition to Φ1-Φ4, a critical fifth hydrophobic amino acid Φ0. Therefore, in human Gpn1 this NES spans amino acids 292-LERLRKDMGSVAL-304. XAB1/Gpn1 NES is remarkably conserved during evolution. XAB1/Gpn1 NES was sufficient for nuclear export activity, as it caused a complete exclusion of EYFP from the cell nucleus. Molecular modeling of XAB1/Gpn1 provided a mechanistic reason for NES selection, as functionality correlated with accessibility, and it also suggested a mechanism for NES inhibition by intramolecular masking. In conclusion, we have identified a highly active, evolutionarily conserved NES in XAB1/Gpn1 that is critical for nucleo-cytoplasmic shuttling and steady-state cytoplasmic localization of XAB1/Gpn1.
GPN‐loop GTPases 1 and 3 are required for RNA polymerase II (RNAPII) nuclear import. Gpn1 and Gpn3 display some sequence similarity, physically associate, and their protein expression levels are mutually dependent in human cells. We performed here Fluorescence Resonance Energy Transfer (FRET), molecular modeling, and cell biology experiments to understand, and eventually disrupt, human Gpn1–Gpn3 interaction in live HEK293‐AD cells. Transiently expressed EYFP‐Gpn1 and Gpn3‐CFP generated a strong FRET signal, indicative of a very close proximity, in the cytoplasm of HEK293‐AD cells. Molecular modeling of the human Gpn1–Gpn3 heterodimer based on the crystallographic structure of Npa3, the Saccharomyces cerevisiae Gpn1 ortholog, revealed that human Gpn1 and Gpn3 associate through a large interaction surface formed by internal α‐helix 7, insertion 2, and the GPN‐loop from each protein. In site‐directed mutagenesis experiments of interface residues, we identified the W132D and M227D EYFP‐Gpn1 mutants as defective to produce a FRET signal when coexpressed with Gpn3‐CFP. Simultaneous but not individual expression of Gpn1 and Gpn3, with either or both proteins fused to EYFP, retained RNAPII in the cytoplasm and markedly inhibited global transcription in HEK293‐AD cells. Interestingly, the W132D and M227D Gpn1 mutants that showed an impaired ability to interact with Gpn3 by FRET were also unable to delocalize RNAPII in this assay, indicating that an intact Gpn1–Gpn3 interaction is required to display the dominant‐negative effect on endogenous Gpn1/Gpn3 function we described here. Altogether, our results suggest that a Gpn1–Gpn3 strong interaction is critical for their cellular function.
Successful therapies for patients with breast cancer often lose their initial effectiveness. Thus, identifying new molecular targets is a constant goal in the fight against breast cancer. Gpn3 is a protein required for RNA polymerase II nuclear targeting in both yeast and human cells. We investigated here the effect of suppressing Gpn3 expression on cell proliferation in a progression series of isogenic cell lines derived from the nontumorigenic MCF-10A breast cells that recapitulate different stages of breast carcinogenesis. Gpn3 protein levels were comparable in all malignant derivatives of the nontumorigenic MCF-10A cells. shRNA-mediated inhibition of Gpn3 expression markedly decreased cell proliferation in all MCF-10A sublines. A fraction of the largest RNA polymerase II subunit Rpb1 was retained in the cytoplasm, but most Rpb1 remained nuclear after suppressing Gpn3 in all cell lines studied. Long-term proliferation experiments in cells with suppressed Gpn3 expression resulted in the eventual loss of all isogenic cell lines but MCF-10CA1d.cl1. In MCF-10CA1d.cl1 cells, Gpn3 knockdown reduced the proliferation of breast cancer stem cells as evaluated by mammosphere assays. After the identification that Gpn3 plays a key role in cell proliferation in mammary epithelial cells independent of the degree of transformation, we also analyzed the importance of Gpn3 in other human breast cancer cell lines from different subtypes. Gpn3 was also required for cell proliferation and nuclear translocation of RNA polymerase II in such cellular models. Altogether, our results show that Gpn3 is essential for breast cancer cell proliferation regardless of the transformation level, indicating that Gpn3 could be considered a molecular target for the development of new antiproliferative therapies. Importantly, our analysis of public data revealed that Gpn3 overexpression was associated with a significant decrease in overall survival in patients with estrogen receptor-positive and Human epidermal growth factor receptor 2 (HER2+) breast cancer, supporting our proposal that targeting Gpn3 could potentially benefit patients with breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.