Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects.We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY-not an acronym, rather a statement of sentiment; https ://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.
Running headline: Assembly rules along a long stress gradient Summary 1. A central issue of community ecology is finding rules that explain the composition and abundance of co-existing species. Nowadays two main processes, environmental filtering and limiting similarity are thought to play the main roles in structuring communities. Their relative importance under different environmental conditions, however, is still not properly clarified. 2. We studied the strength and the effect of environmental filtering (causing convergence) and limiting similarity (causing divergence) in 137 sample plots along an extremely long environmental gradient ranging from open sand grasslands to highly productive marshes, using a trait based approach. The main environmental gradient (i.e. productivity) was characterised by the Normalized Difference Vegetation Index, an indicator of aboveground live biomass. Cover of the plant species was estimated visually. Values of 11 plant traits were collected from field measurements and databases. Mean and dispersion of the trait values of the plots were quantified by community-weighted means and Rao's quadratic entropy. Trait convergence and divergence were tested by randomization tests, followed by the study of changes in effect size along the productivity gradient by fitting generalized additive mixed models (GAMM). 3. For vegetative traits we found mainly convergence, indicating the filtering effect of environmental constraints, while traits related to regeneration showed divergence. 4. The strength of convergence in vegetative traits generally decreased as productivity grew, indicating that while under harsh conditions environmental constraints strongly limit the possible trait values; under more benign conditions various water and nutrient-use strategies are adaptable. At high productivity, the strength of divergence in regenerative traits decreased. Since the larger diversity of vegetative traits found here reduces competition, the importance of diverse reproductive strategy is probably lower. 5. Synthesis: Our results partly support the stress-dominance hypothesis, but reveal that assembly rules are more complex. The relative importance of environmental filtering and limiting similarity depends on the trait and on the environmental conditions of the habitat. Traits related to resource use are generally limited by environmental filtering, and this restriction is weakening as conditions become more favourable, while traits related to regeneration are constrained by limiting similarity and are more diverse under harsh conditions.
Invasion of alien plant species is one of the main reasons for biodiversity loss in terrestrial ecosystems. However, alien plant species are not evenly distributed in the landscape. We studied which factors determine the actual level of neophyte invasion in a landscape with heterogeneous land-use and which habitats are the most infected. Since neophyte species with different life-forms can respond differently to the factors determining the invasion, species groups of annual, herbaceous perennial and woody neophytes were also analyzed separately. The study was conducted within the field site network of the Kiskun-LTER program (Hungary), in 16 sites of 5 km  5 km. Fifteen habitat types were distinguished belonging to five major land-use/land cover types (agricultural land, abandoned agricultural land, tree plantation, semi-natural grassland and semi-natural forest). Present and past land-use, landscape composition and environmental variables were included as factors with a potential impact on the level of invasion. The most important factor determining invasion level was present habitat type, followed by the past habitat type of the location and landscape context. Tree plantations, agricultural habitats and recently abandoned agricultural habitats had the highest level of invasion. As expected, annual neophytes were most abundant in agricultural habitats, while perennial herbaceous neophytes were most abundant in old-fields and plantations, and woody neophytes in tree plantations. Past agricultural land-use was reflected in the higher levels of invasion of annuals and perennials, and past forestry practice resulted in higher levels of invasion of woody neophytes. In a landscape with a higher proportion of tree plantations, not only the tree plantations, but primary woodland [ 2 4 0 _ T D $ D I F F ] patches also showed higher levels of invasion by woody neophyte species. Our results indicate the importance of present and past land-use in plant invasion and suggest that tree plantations are hot-spots of plant invasion and threaten the remnants of semi-natural vegetation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.