The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
It was shown as long as half a century ago that bone marrow is a source of not only hematopoietic stem cells, but also stem cells of mesenchymal tissues. Then the term “mesenchymal stem cells” (MSCs) was coined in the early 1990s, and more than a decade later, the criteria for defining MSCs have been released by the International Society for Cellular Therapy. The easy derivation from a variety of fetal and adult tissues and undemanding cell culture conditions made MSCs an attractive research object. It was followed by the avalanche of reports from preclinical studies on potentially therapeutic properties of MSCs, such as immunomodulation, trophic support and capability for a spontaneous differentiation into connective tissue cells, and differentiation into the majority of cell types upon specific inductive conditions. Although ontogenesis, niche, and heterogeneity of MSCs are still under investigation, there is a rapid boost of attempts at clinical applications of MSCs, especially for a flood of civilization‐driven conditions in so quickly aging societies, not only in the developed countries, but also in the populous developing world. The fields of regenerative medicine and oncology are particularly extensively addressed by MSC applications, in part due to the paucity of traditional therapeutic options for these highly demanding and costly conditions. There are currently almost 1,000 clinical trials registered worldwide at http://Clinicaltrials.gov/, and it seems that we are starting to witness the snowball effect with MSCs becoming a powerful global industry; however, the spectacular effects of MSCs in the clinic still need to be shown. Stem Cells 2019;37:855–864
Stem cell therapy is being intensely investigated within the last years. Expectations are high regarding mesenchymal stem cell (MSC) treatment in translational medicine. However, many aspects concerning MSC therapy should be profoundly defined. Due to a variety of approaches that are investigated, potential effects of stem cell therapy are not transparent. On the other hand, most results of MSC administration in vivo have confirmed their safety and showed promising beneficial outcomes. However, the therapeutic effects of MSC-based treatment are still not spectacular and there is a potential risk related to MSC applications into specific cell niche that should be considered in long-term observations and follow-up outcomes. In this review, we intend to address some problems and critically discuss the complex nature of MSCs in the context of their effective and safe applications in regenerative medicine in different diseases including graft versus host disease (GvHD) and cardiac, neurological, and orthopedic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.