The aggregation-induced emission properties of tetraarylethenes (TAEs) have led to numerous applications in chemistry, biology, and materials science. Herein, we describe two fluorinated tetraarylethenes, which can be employed as universal tags for the synthesis of solid state luminogens. The tags are accessible in one or two steps from commercially available starting materials. Facile coupling reactions with ubiquitous substrates such as thiols, alcohols, amines, phosphines, aldehydes, and enamines allow preparing a wide range of TAE conjugates, including tagged amino acids, peptides, carbohydrates, steroids, and commercial polymers.
The aggregation-induced emission properties of tetraarylethenes (TAEs) have led to numerous applications in chemistry, biology, and materials science. Herein, we describe two fluorinated tetraarylethenes, which can be employed as universal tags for the synthesis of solid state luminogens. The tags are accessible in one or two steps from commercially available starting materials. Facile coupling reactions with ubiquitous substrates such as thiols, alcohols, amines, phosphines, aldehydes, and enamines allow preparing a wide range of TAE conjugates, including tagged amino acids, peptides, carbohydrates, steroids, and commercial polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.