It is not understood how immune inflammation influences the pathogenesis of severe acute respiratory syndrome (SARS). One area of strong controversy is the role of interferon (IFN) responses in the natural history of SARS.The fact that the majority of SARS patients recover after relatively moderate illness suggests that the prevailing notion of deficient type I IFN-mediated immunity, with hypercytokinemia driving a poor clinical course, is oversimplified. We used proteomic and genomic technology to systematically analyze host innate and adaptive immune responses of 40 clinically well-described patients with SARS during discrete phases of illness from the onset of symptoms to discharge or a fatal outcome. A novel signature of high IFN-␣, IFN-␥, and IFN-stimulated chemokine levels, plus robust antiviral IFN-stimulated gene (ISG) expression, accompanied early SARS sequelae. As acute illness progressed, SARS patients entered a crisis phase linked to oxygen saturation profiles. The majority of SARS patients resolved IFN responses at crisis and expressed adaptive immune genes. In contrast, patients with poor outcomes showed deviated ISG and immunoglobulin gene expression levels, persistent chemokine levels, and deficient anti-SARS spike antibody production. We contend that unregulated IFN responses during acute-phase SARS may culminate in a malfunction of the switch from innate immunity to adaptive immunity. The potential for the use of the gene signatures we describe in this study to better assess the immunopathology and clinical management of severe viral infections, such as SARS and avian influenza (H5N1), is therefore worth careful examination.Severe acute respiratory syndrome coronavirus (SARS CoV) causes a spectrum of disease ranging from flu-like symptoms and viral pneumonia to acute respiratory distress syndrome and fatal outcomes (14,16,23,31,41). The mechanisms by which SARS CoV causes severe illness in humans are largely unknown. SARS CoV takes hold in the airways and other organs via its main putative receptor, angiotensin-converting enzyme 2 (ACE2), expressed on many cell types, including pneumocytes, enterocytes, and endothelial cells (19,25,32). SARS CoV appears to evade innate immunity during the first 10 days of infection during a period of widespread inflammation and steadily increasing viral load (39, 52). The consequent immune inflammation and hypercytokinemia, or "cytokine storm," during the course of SARS has been illustrated (22,27,33,37,51), but the molecular and cellular basis of how SARS CoV impacts host defense, resulting in a poor prognosis, is not understood. One particular area of controversy is the role of interferon (IFN) responses in human host immune responses against SARS CoV.Type I IFNs, such as IFN-␣ and -, are critical to innate immune responses against viral and other microbial infections and act in concert with IFN-␥ in the activation of antiviral IFN-stimulated genes (ISGs) and the immunomodulation of innate and adaptive immunity (3,36,42,48). It has been proposed that deficie...
A major outbreak involving an Escherichia coli strain that was resistant to expanded-spectrum cephalosporins occurred in Toronto and surrounding regions in 2000 to 2002. We report the complete sequence of a plasmid, pC15-1a, that was found associated with the outbreak strain. Plasmid pC15-1a is a circular molecule of 92,353 bp consisting of two distinct regions. The first is a 64-kb region that is essentially homologous to the non-R-determinant region of plasmid R100 except for several point mutations, a few small insertions and deletions, and the absence of Tn10. The second is a 28.4-kb multidrug resistance region (MDR) that has replaced the R-determinant region of the R100 progenitor and consists mostly of transposons or partial transposons and five copies of the insertion element IS26. All drug resistance genes found in pC15-1a, including the beta-lactamase genes bla CTX-M-15 , bla OXA-1 , and bla TEM-1 , the tetracycline resistance gene tetA, and aminoglycoside resistance genes aac(6)-Ib and aac(3)-II, are located in the MDR. The bla CTX-M-15 gene was found downstream of ISEcp1as part of a transposition unit, as determined from the surrounding sequence. Examination of the plasmids from CTX-M-15-harboring strains isolated from hospitals across Canada showed that pC15-1a was found in several strains isolated from a site in western Canada. Comparison of pC15-1a and pCTX15, found in an E. coli strain isolated in India in 1999, revealed that the plasmids had several features in common, including an R100 backbone and several of the resistance genes, including bla CTX-M-15 , bla TEM-1 , bla OXA-1 , tetA, and aac(6)-Ib.Plasmid-mediated extended-spectrum beta-lactamase (ESBL) enzymes are most commonly of the TEM, SHV, or CTX-M type (8). To date more than 120 TEM enzymes, more than 50 SHV enzymes, and more than 30 CTX-M enzymes have been reported (www.lahey.org/studies/). Members of these groups are class A enzymes and, for the most part, are inhibited by clavulanic acid.The CTX-M-type beta-lactamases are increasingly found in enterobacterial species throughout the world; more than half have been reported within the last 4 years (7, 28). They are generally most active against cefotaxime and show little activity against ceftazidime. Phylogenetically, they are grouped into five clusters based on their amino acid identities: the CTX-M-1 cluster etc.), the CTX-M-2 cluster etc.), the CTX-M-8 cluster (CTX-M-8), the CTX-M-25 cluster , and the CTX-M-9 cluster
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.