The FAIR principles have been widely cited, endorsed and adopted by a broad range of stakeholders since their publication in 2016. By intention, the 15 FAIR guiding principles do not dictate specific technological implementations, but provide guidance for improving Findability, Accessibility, Interoperability and Reusability of digital resources. This has likely contributed to the broad adoption of the FAIR principles, because individual stakeholder communities can implement their own FAIR solutions. However, it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations. Thus, while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways, for true interoperability we need to support convergence in implementation choices that are widely accessible and (re)-usable. We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible, robust, widespread and consistent FAIR implementations. Any self-identified stakeholder community may either choose to reuse solutions from existing implementations, or when they spot a gap, accept the challenge to create the needed solution, which, ideally, can be used again by other communities in the future. Here, we provide interpretations and implementation considerations (choices and challenges) for each FAIR principle.
We present ten simple rules that support converting a legacy vocabulary—a list of terms available in a print-based glossary or in a table not accessible using web standards—into a FAIR vocabulary. Various pathways may be followed to publish the FAIR vocabulary, but we emphasise particularly the goal of providing a globally unique resolvable identifier for each term or concept. A standard representation of the concept should be returned when the individual web identifier is resolved, using SKOS or OWL serialised in an RDF-based representation for machine-interchange and in a web-page for human consumption. Guidelines for vocabulary and term metadata are provided, as well as development and maintenance considerations. The rules are arranged as a stepwise recipe for creating a FAIR vocabulary based on the legacy vocabulary. By following these rules you can achieve the outcome of converting a legacy vocabulary into a standalone FAIR vocabulary, which can be used for unambiguous data annotation. In turn, this increases data interoperability and enables data integration.
Powerful incentives are driving the adoption of FAIR practices among a broad cross-section of stakeholders. This adoption process must factor in numerous considerations regarding the use of both domain-specific and infrastructural resources. These considerations must be made for each of the FAIR Guiding Principles and include supra-domain objectives such as the maximum reuse of existing resources (i.e., minimised reinvention of the wheel) or maximum interoperation with existing FAIR data and services. Despite the complexity of this task, it is likely that the majority of the decisions will be repeated across communities and that communities can expedite their own FAIR adoption process by judiciously reusing the implementation choices already made by others. To leverage these redundancies and accelerate convergence onto widespread reuse of FAIR implementations, we have developed the concept of FAIR Implementation Profile (FIP) that captures the comprehensive set of implementation choices made at the discretion of individual communities of practice. The collection of community-specific FIPs compose an online resource called the FIP Convergence Matrix which can be used to track the evolving landscape of FAIR implementations and inform optimisation around reuse and interoperation. Readymade and well-tested FIPs created by trusted communities will find widespread reuse among other communities and could vastly accelerate decision making on well-informed implementations of the FAIR Principles within and particularly between domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.