Peptides related to melanotropin (alphaMSH) and corticotropin (ACTH), collectively termed melanocortins, are known to improve the postlesion repair of injured peripheral nerves. In addition, melanocortins exert trophic effects on the outgrowth of neurites from central nervous system neurons in vitro. Here we report, for the first time, the stimulation by alpha-MSH of spinal neurite outgrowth in vivo after injury. In the in vivo model, spinal cord trauma was produced at lower thoracic spinal levels of adult rats. Under a surgical microscope a laminectomy was performed exposing the dorsum of the spinal cord. Then the dura was cut longitudinally and the dorsal columns were identified. Iridectomy scissors were used to transect the dorsal half of the spinal cord bilaterally, thereby completely lesioning the main corticospinal tract component. Then the lesion gap was immediately filled with a solid collagen matrix. Ingrowth of fibers was quantified using an advanced image analyser using a video image of sections transmitted by a camera. In the control situation virtually no ingrowth of sprouting injured fibers into the collagen implant in the lesion gap was seen. However, when the collagen matrix contained 10(-8) M alpha-MSH, a profound and significant stimulation of fiber ingrowth into the implant was observed (alpha-MSH, 21.5 +/- 2.9%; control, 1.4 +/- 0.6% p < 0.01). A small percentage of these ingrowing fibers was CGRP-immunoreactive (17.0 +/- 4%), whereas no serotonergic ingrowth was observed. Furthermore, we found that local application of alpha-MSH directs a substantial amount of lesioned anterogradely labelled corticospinal tract axons to regrow into the collagen implant (alpha-MSH, 15.2 +/- 5.2%; control, 0.5 +/- 0.3%, p < 0.01). The observed fiber ingrowth is not accompanied by an invasion of astroglial or reactive microglial cells into the implant. In conclusion, inclusion of alpha-MSH in the collagen implant stimulates the regrowth of injured axons in the adult rat spinal cord.
Developmental expression of two phosphorylation modes of microtubule-associated protein 1B (MAP-1B) has been studied in the barrel cortex of mice at postnatal days (P)5, P12, P21 and P90 using immunocytochemistry with antibodies 125 and 150 that recognize phosphorylation modes II and I, respectively. The antibody 125 immunoreactive processes, identified as dendrites, are not yet detectable at P5; they are already present at P12 and become more evident at P21. In the barrel cortex of P90 animals the antibody 125 immunopositive dendrites are still present, although they are much less pronounced. The antibody 150 punctate immunostaining seen at P5 is not detectable at P12. At P21, however, thin immunopositive fibres appear, implicating a re-expression of the microtubule-associated protein 1B phosphorylation mode I in a portion of axons. The antibody 150 immunopositive axons are no longer present in the P90 barrel cortex. The re-expression of the MAP-1B phosphorylation mode I, which is a juvenile isoform characteristic for growing axons, may imply induction of mechanisms providing mouse barrel cortex neurons with the potency for plastic changes at a terminal stage of synaptogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.