Autism is a severe disorder that involves both genetic and environmental factors. Expression profiling of the superior temporal gyrus of six autistic subjects and matched controls revealed increased transcript levels of many immune system related genes. We also noticed changes in transcripts related to cell communication, differentiation, cell cycle regulation and chaperone systems. Critical expression changes were confirmed by qPCR (BCL6, CHI3L1, CYR61, IFI16, IFITM3, MAP2K3, PTDSR, RFX4, SPP1, RELN, NOTCH2, RIT1, SFN, GADD45B, HSPA6, HSPB8 and SERPINH1). Overall, these expression patterns appear to be more associated with the late recovery phase of autoimmune brain disorders, than with the innate immune response characteristic of neurodegenerative diseases. Moreover, a variance-based analysis revealed much greater transcript variability in brains from autistic subjects compared to the control group, suggesting that these genes may represent autism susceptibility genes and should be assessed in follow-up genetic studies.
Autism is a severe developmental disorder, whose pathogenetic underpinnings are still largely unknown. Temporocortical gray matter from six matched patient-control pairs was used to perform post-mortem biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier (AGC), which participates in the aspartate/malate reduced nicotinamide adenine dinucleotide shuttle and is physiologically activated by calcium (Ca(2+)). AGC transport rates were significantly higher in tissue homogenates from all six patients, including those with no history of seizures and with normal electroencephalograms prior to death. This increase was consistently blunted by the Ca(2+) chelator ethylene glycol tetraacetic acid; neocortical Ca(2+) levels were significantly higher in all six patients; no difference in AGC transport rates was found in isolated mitochondria from patients and controls following removal of the Ca(2+)-containing postmitochondrial supernatant. Expression of AGC1, the predominant AGC isoform in brain, and cytochrome c oxidase activity were both increased in autistic patients, indicating an activation of mitochondrial metabolism. Furthermore, oxidized mitochondrial proteins were markedly increased in four of the six patients. Variants of the AGC1-encoding SLC25A12 gene were neither correlated with AGC activation nor associated with autism-spectrum disorders in 309 simplex and 17 multiplex families, whereas some unaffected siblings may carry a protective gene variant. Therefore, excessive Ca(2+) levels are responsible for boosting AGC activity, mitochondrial metabolism and, to a more variable degree, oxidative stress in autistic brains. AGC and altered Ca(2+) homeostasis play a key interactive role in the cascade of signaling events leading to autism: their modulation could provide new preventive and therapeutic strategies. Molecular Psychiatry (2010) 15, 38-52; doi: 10.1038/mp.2008.63; published online 8 July 200
Autism is a complex neurodevelopmental disorder, likely encompassing multiple pathogenetic components. The aim of this study is to begin identifying at least some of these components and to assess their association with biological endophenotypes. To address this issue, we recruited 245 Italian patients with idiopathic autism spectrum disorders and their first-degree relatives. Using a stepwise approach, patient and family history variables were analyzed using principal component analysis ("exploratory phase"), followed by intra- and inter-component cross-correlation analyses ("follow-up phase"), and by testing for association between each component and biological endophenotypes, namely head circumference, serotonin blood levels, and global urinary peptide excretion rates ("biological correlation phase"). Four independent components were identified, namely "circadian & sensory dysfunction," "immune dysfunction," "neurodevelopmental delay," and "stereotypic behavior," together representing 74.5% of phenotypic variance in our sample. Marker variables in the latter three components are positively associated with macrocephaly, global peptiduria, and serotonin blood levels, respectively. These four components point toward at least four processes associated with autism, namely (I) a disruption of the circadian cycle associated with behavioral and sensory abnormalities, (II) dysreactive immune processes, surprisingly linked both to prenatal obstetric complications and to excessive postnatal body growth rates, (III) a generalized developmental delay, and (IV) an abnormal neural circuitry underlying stereotypies and early social behaviors.
Autism is an etiologic heterogeneous entity caused by many different diseases occurring in the central nervous system at an early stage in life. Several metabolic defects have been associated with autistic symptoms with a rate higher than that found in the general population. Inborn errors of metabolism can probably account for less than 5% of individuals. Selective metabolic testing should be done in the presence of suggestive clinical findings, including lethargy, cyclic vomiting, early seizures, dysmorphic features, and mental retardation. In some patients, early diagnosis of the metabolic disorders and proper therapeutic interventions may significantly improve the long-term cognitive and behavioral outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.