Abstract. In 1997 the International Maritime Organisation (IMO) adopted MARPOL Annex VI to prevent air pollution by shipping emissions. It regulates, among other issues, the sulfur content in shipping fuels, which is transformed into the air pollutant sulfur dioxide (SO 2 ) during combustion. Within designated Sulfur Emission Control Areas (SECA), the sulfur content was limited to 1 %, and on 1 January 2015, this limit was further reduced to 0.1 %. Here we present the set-up and measurement results of a permanent ship emission monitoring site near Hamburg harbour in the North Sea SECA. Trace gas measurements are conducted with in situ instruments and a data set from September 2014 to January 2015 is presented. By combining measurements of carbon dioxide (CO 2 ) and SO 2 with ship position data, it is possible to deduce the sulfur fuel content of individual ships passing the measurement station, thus facilitating the monitoring of compliance of ships with the IMO regulations. While compliance is almost 100 % for the 2014 data, it decreases only very little in 2015 to 95.4 % despite the much stricter limit. We analysed more than 1400 ship plumes in total and for months with favourable conditions, up to 40 % of all ships entering and leaving Hamburg harbour could be checked for their sulfur fuel content.
Abstract. A 3-year time series of ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of NO2 and SO2 on the island Neuwerk has been analyzed for contributions from shipping emissions. The island is located in the German Bight, close to the main shipping lane (at a distance of 6–7 km) into the river Elbe towards the harbor of Hamburg. Measurements of individual ship plumes as well as of background pollution are possible from this location. A simple approach using the column amounts of the oxygen molecule dimer or collision complex, O4, for the determination of the horizontal light path length has been applied to retrieve path-averaged volume mixing ratios. An excellent agreement between mixing ratios determined from NO2 retrievals in the UV and visible parts of the spectrum has been found, showing the validity of the approach. Obtained mixing ratios of NO2 and SO2 are compared to co-located in situ measurements showing good correlation on average but also a systematic underestimation by the MAX-DOAS O4 scaling approach. Comparing data before and after the introduction of stricter fuel sulfur content limits (from 1 to 0.1 %) on 1 January 2015 in the North Sea Emission Control Area (ECA), a significant reduction in SO2 levels is observed. For situations with wind from the open North Sea, where ships are the only local source of air pollution, the average mixing ratio of SO2 decreased by a factor of 8, while for NO2 in the whole time series from 2013 to 2016, no significant change in emissions was observed. More than 2000 individual ship emission plumes have been identified in the data and analyzed for the emission ratio of SO2 to NO2, yielding an average ratio of 0.3 for the years 2013/2014 and decreasing significantly, presumably due to lower fuel sulfur content, in 2015/2016. By sorting measurements according to the prevailing wind direction and selecting two angular reference sectors representative for wind from the open North Sea and coast excluding data with mixed air mass origin, relative contributions of ships and land-based sources to air pollution levels in the German Bight have been estimated to be around 40 % : 60 % for NO2 as well as SO2 in 2013/2014, dropping to 14 % : 86 % for SO2 in 2015/2016.
Abstract. This study describes a novel application of an “onion-peeling” approach to multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of shipping emissions aiming at investigating the strong horizontal inhomogeneities in NO2 over a shipping lane. To monitor ship emissions on the main shipping route towards the port of Hamburg, a two-channel (UV and visible) MAX-DOAS instrument was deployed on the island Neuwerk in the German Bight, 6–7 km south of the main shipping lane. Utilizing the fact that the effective light path length in the atmosphere depends systematically on wavelength, simultaneous measurements and DOAS retrievals in the UV and visible spectral ranges are used to probe air masses at different horizontal distances to the instrument to estimate two-dimensional pollutant distributions. Two case studies have been selected to demonstrate the ability to derive the approximate plume positions in the observed area. A situation with northerly wind shows high NO2 concentrations close to the measurement site and low values in the north of the shipping lane. The opposite situation with southerly wind, unfavorable for the on-site in situ instrumentation, demonstrates the ability to detect enhanced NO2 concentrations several kilometers away from the instrument. Using a Gaussian plume model, in-plume NO2 volume mixing ratios can be derived from the MAX-DOAS measurements. For validation, a comparison to airborne imaging DOAS measurements during the NOSE campaign in July 2013 is performed, showing good agreement between the approximate plume position derived from the onion-peeling MAX-DOAS and the airborne measurements as well as between the derived in-plume NO2 volume mixing ratios (VMRs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.