Geothermal energy could play a crucial role in the European energy market and future scenarios focused on sustainable development. Thanks to its constant supply of concentrated energy, it can support the transition towards a low-carbon economy. In the energy sector, the decision-making process should always be supported by a holistic science-based approach to allow a comprehensive environmental assessment of the technological system, such as the life cycle assessment (LCA) methodology. In the geothermal sector, the decision-making is particularly difficult due to the large variability of reported results on environmental performance across studies. This calls for harmonized guidelines on how to conduct LCAs of geothermal systems to enhance transparency and results comparability, by ensuring consistent methodological choices and providing indications for harmonized results reporting. This work identifies the main critical aspects of performing an LCA of geothermal systems and provides solutions and technical guidance to harmonize its application. The proposed methodological approach is based on experts’ knowledge from both the geothermal and LCA sectors. The recommendations cover all the life cycle phases of geothermal energy production (i.e., construction, operation, maintenance and end of life) as well as a selection of LCA key elements thus providing a thorough base for concerted LCA guidelines for the geothermal sector. The application of such harmonized LCA framework can ensure comparability among LCA results from different geothermal systems and other renewable energy technologies.
Hydrothermal carbonization (HTC) represents one of the emerging and most promising technologies for upgrading biomass. Among the residual biomass waste, olive pomace and olive mill wastewater may be seen as valuable energy sources, especially for the Mediterranean countries, given the key role of the olive oil industry in those regions. This paper deals with the thermo-fluid dynamic performance of the HTC process of olive pomace. Computational Fluid Dynamics (CFD) modeling is employed in this study to numerically simulate such a process in batch reactor with the aim of understanding the complex fluid dynamics, heat transfer and reaction kinetics phenomena occurring under hydrothermal conditions. A parametric analysis is performed to evaluate the temperature fields inside the reactor and the output mass yields as a function of the power input required by the process. Velocity flow fields and the spatial distribution of the mixture during the process are also investigated to understand the change in feed conversion at different regions within the tubular reactor under different reaction times. The numerical results are validated and compared with experimental measurements conducted previously on a similar batch reactor. The model predictions are found to be in line with the experimental findings, thus laying the foundations for further modeling improvements towards the design optimization and scale-up of HTC reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.