The cytosolic protein APAF1, human homolog of C. elegans CED-4, participates in the CASPASE 9 (CASP9)-dependent activation of CASP3 in the general apoptotic pathway. We have generated by gene trap a null allele of the murine Apaf1. Homozygous mutants die at embryonic day 16.5. Their phenotype includes severe craniofacial malformations, brain overgrowth, persistence of the interdigital webs, and dramatic alterations of the lens and retina. Homozygous embryonic fibroblasts exhibit reduced response to various apoptotic stimuli. In situ immunodetection shows that the absence of Apaf1 protein prevents the activation of Casp3 in vivo. In agreement with the reported function of CED-4 in C. elegans, this phenotype can be correlated with a defect of apoptosis. Our findings suggest that Apaf1 is essential for Casp3 activation in embryonic brain and is a key regulator of developmental programmed cell death in mammals.
Cdx1 is expressed along the embryonic axis from day 7.5 postcoitum until day 12, by which time the anterior limit of expression has regressed from the hindbrain level to the forelimb bud region. To assign a functional role for Cdx1 in murine embryonic development, we have inactivated the gene via homologous recombination. Viable fertile homozygous mutant mice were obtained that show anterior homeotic transformations of vertebrae. These abnormalities were concomitant with posterior shifts of Hox gene expression domains in the somitic mesoderm. The presence of putative Cdx1-binding sites in Hox gene control regions as well as in vitro transactivation of Hoxa-7 indicates a direct regulation.
Loss of tight association between epidermis and dermis underlies several blistering disorders and is frequently caused by impaired function of extracellular matrix (ECM) proteins. Here we describe a new protein in mouse, Fras1, that is specifically detected in a linear fashion underlying the epidermis and the basal surface of other epithelia in embryos. Loss of Fras1 function results in the formation of subepidermal hemorrhagic blisters as well as unilateral or bilateral renal agenesis during mouse embryogenesis. Postnatally, homozygous Fras1 mutants have fusion of the eyelids and digits and unilateral renal agenesis or dysplasia. The defects observed in Fras1-/- mice phenocopy those of the existing bl (blebbed) mouse mutants, which have been considered a model for the human genetic disorder Fraser syndrome. We show that bl/bl homozygous embryos are devoid of Fras1 protein, consistent with the finding that Fras1 is mutated in these mice. In sum, our data suggest that perturbations in the composition of the extracellular space underlying epithelia could account for the onset of the blebbed phenotype in mouse and Fraser syndrome manifestation in human.
A method for the characterization of insoluble lichen pigments is presented. The method relies on pH–dependent colour reactions before and after pretreatment with HNO3. Diagnostic reactions for 22 different pigments and a key for their identification are given. A standardized nomenclature and a procedure similar to the typification of species in systematic botany is proposed in order to avoid ambiguous naming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.