Snapdragon flowers emit two monoterpene olefins, myrcene and ( E )- -ocimene, derived from geranyl diphosphate, in addition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases ( ama1e20 and ama0c15 ) and an ( E )- -ocimene synthase ( ama0a23 ). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. ( E )- -Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly ( E )- -ocimene (97% of total monoterpene olefin product) with small amounts of ( Z )- -ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx 8 W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S -linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production.
Stem-boring insects and methyl jasmonate (MeJA) are thought to induce similar complex chemical and anatomical defenses in conifers. To compare insect-and MeJA-induced terpenoid responses, we analyzed traumatic oleoresin mixtures, emissions of terpenoid volatiles, and expression of terpenoid synthase (TPS) genes in Sitka spruce (Picea sitchensis) following attack by white pine weevils (Pissodes strobi) or application of MeJA. Both insects and MeJA caused traumatic resin accumulation in stems, with more accumulation induced by the weevils. Weevil-induced terpenoid emission profiles were also more complex than emissions induced by MeJA. Weevil feeding caused a rapid release of a blend of monoterpene olefins, presumably by passive evaporation of resin compounds from stem feeding sites. These compounds were not found in MeJA-induced emissions. Both weevils and MeJA caused delayed, diurnal emissions of (2)-linalool, indicating induced de novo biosynthesis of this compound. TPS transcripts strongly increased in stems upon insect attack or MeJA treatment. Time courses and intensity of induced TPS transcripts were different for monoterpene synthases, sesquiterpene synthases, and diterpene synthases. Increased levels of weevil-and MeJA-induced TPS transcripts accompanied major changes in terpenoid accumulation in stems. Induced TPS expression profiles in needles were less complex than those in stems and matched induced de novo emissions of (2) Chemical and physical defense of conifers against potential herbivores and pathogens depends on a large array of structurally diverse monoterpenoids (C10), sesquiterpenoids (C15), and diterpenoids (C20;
For the first time, the complete functional gene for isoprene synthase has been isolated from poplar (Populus alba x Populus tremula). The gene was quite similar to known limonene and other monoterpene synthases, but was found to specifically catalyze the formation of isoprene from the precursor dimethylallyl diphosphate with only a marginal activity for the formation of the monoterpene limonene from geranyl diphosphate as compared with limonene synthases. Omitting the part of the gene that putatively encoded the signal peptide necessary for transport into the chloroplast led to an enhanced rate of isoprene formation by the recombinant protein.
An improved protocol was developed for efficient and reliable extraction of high-quality total RNA and mRNA from various tissues of spruce (Picea spp.) and poplar (Populus spp.) trees, as well as other plant species. This method was specifically optimized for tissues with high content of polysaccharides, oleoresin terpenoids, and phenolic secondary metabolites, which often co-precipitate with RNA and inhibit subsequent reverse transcription. The improved protocol yielded up to 600 micrograms of total RNA per gram of tissue suitable for standard expressed sequence tags (ESTs), full-length cDNA library construction, and for microarray applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.