The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds.
The search for drugs with anorectic activity, acting within the adrenergic system has attracted the interest of researchers. Partial α2-adrenoceptor agonists might offer the potential for effective and safe treatment of obesity. We compared the effectiveness and safety of α2-adrenoceptor ligands in reducing body mass. We also analyzed if antagonist and partial agonists of α2-adrenoceptor––yohimbine and guanfacine––act similarly, and determined which course of action is connected with anorectic activity. We tested intrinsic activity and effect on the lipolysis of these compounds in cell cultures, evaluated their effect on meal size, body weight in Wistar rats with high-fat diet-induced obesity, and determined their effect on blood pressure, heart rate, lipid profile, spontaneous locomotor activity, core temperature and glucose, as well as glycerol and cortisol levels. Both guanfacine and yohimbine showed anorectic activity. Guanfacine was much more effective than yohimbine. Both significantly reduced the amount of intraperitoneal adipose tissue and had a beneficial effect on lipid profiles. Decreased response of α2A-adrenoceptors and partial stimulation of α2B-receptors seem to be responsible for the anorectic action of guanfacine. The stimulation of α1-adrenoceptors by guanfacine is responsible for cardiovascular side effects but may also be linked with improved anorexic effect. α1-adrenoceptor blockade is connected with the side effects of yohimbine, but it is also associated with the improvement of lipid profiles. Guanfacine has been approved by the Food and Drug Administration (FDA) to treat hypertension and conduct disorder, but as it reduces body weight, it is worth examining its effectiveness and safety in models of obesity.
New tritarget small molecules combining Ca2+ channels
blockade, cholinesterase, and H3 receptor inhibition were obtained
by multicomponent synthesis. Compound 3p has been identified
as a very promising lead, showing good Ca2+ channels blockade
activity (IC50 = 21 ± 1 μM), potent affinity
against hH3R (K
i = 565 ± 62 nM),
a moderate but selective hBuChE inhibition (IC50 = 7.83
± 0.10 μM), strong antioxidant power (3.6 TE), and ability
to restore cognitive impairment induced by lipopolysaccharide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.