New tritarget small molecules combining Ca2+ channels
blockade, cholinesterase, and H3 receptor inhibition were obtained
by multicomponent synthesis. Compound 3p has been identified
as a very promising lead, showing good Ca2+ channels blockade
activity (IC50 = 21 ± 1 μM), potent affinity
against hH3R (K
i = 565 ± 62 nM),
a moderate but selective hBuChE inhibition (IC50 = 7.83
± 0.10 μM), strong antioxidant power (3.6 TE), and ability
to restore cognitive impairment induced by lipopolysaccharide.
Melatonin is an endogenous hormone produced by the pineal gland as well as many other tissues and organs. The natural decline in melatonin levels with ageing contributes significantly to the development of neurodegenerative disorders. Neurodegenerative diseases share common mechanisms of toxicity such as proteinopathy, mitochondrial dysfunction, metal dyshomeostasis, oxidative stress, neuroinflammation and an imbalance in the phosphorylation/dephosphorylation ratio. Several reports have proved the usefulness of melatonin in counteracting the events that lead to a neurodegenerative scenario. In this review, we have focused on the fact that melatonin could rectify the altered phosphorylation/dephosphorylation rate found in some neurodegenerative diseases by influencing the activity of phosphoprotein phosphatases. We analyse whether melatonin offers any protective activity towards these enzymes through a direct interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.