Since the discovery of Sry in mammals [1, 2], few other master sex-determining genes have been identified in vertebrates [3-7]. To date, all of these genes have been characterized as well-known factors in the sex differentiation pathway, suggesting that the same subset of genes have been repeatedly and independently selected throughout evolution as master sex determinants [8, 9]. Here, we characterized in rainbow trout an unknown gene expressed only in the testis, with a predominant expression during testicular differentiation. This gene is a male-specific genomic sequence that is colocalized along with the sex-determining locus. This gene, named sdY for sexually dimorphic on the Y chromosome, encodes a protein that displays similarity to the C-terminal domain of interferon regulatory factor 9. The targeted inactivation of sdY in males using zinc-finger nuclease induces ovarian differentiation, and the overexpression of sdY in females using additive transgenesis induces testicular differentiation. Together, these results demonstrate that sdY is a novel vertebrate master sex-determining gene not related to any known sex-differentiating gene. These findings highlight an unexpected evolutionary plasticity in vertebrate sex determination through the demonstration that master sex determinants can arise from the de novo evolution of genes that have not been previously implicated in sex differentiation.
All salmonid species investigated to date have been characterized with a male heterogametic sex-determination system. However, as these species do not share any Y-chromosome conserved synteny, there remains a debate on whether they share a common master sex-determining gene. In this study, we investigated the extent of conservation and evolution of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene, sdY (sexually dimorphic on the Y-chromosome), in 15 different species of salmonids. We found that the sdY sequence is highly conserved in all salmonids and that sdY is a male-specific Y-chromosome gene in the majority of these species. These findings demonstrate that most salmonids share a conserved sex-determining locus and also strongly suggest that sdY may be this conserved master sex-determining gene. However, in two whitefish species (subfamily Coregoninae), sdY was found both in males and females, suggesting that alternative sex-determination systems may have also evolved in this family. Based on the wide conservation of sdY as a male-specific Y-chromosome gene, efficient and easy molecular sexing techniques can now be developed that will be of great interest for studying these economically and environmentally important species.
Genetic control of male or female gonad development displays between different groups of organisms a remarkable diversity of “master sex-determining genes” at the top of the genetic hierarchies, whereas downstream components surprisingly appear to be evolutionarily more conserved. Without much further studies, conservation of sequence has been equalized to conservation of function. We have used the medaka fish to investigate the generality of this paradigm. In medaka, the master male sex-determining gene is dmrt1bY, a highly conserved downstream regulator of sex determination in vertebrates. To understand its function in orchestrating the complex gene regulatory network, we have identified targets genes and regulated pathways of Dmrt1bY. Monitoring gene expression and interactions by transgenic fluorescent reporter fish lines, in vivo tissue-chromatin immunoprecipitation and in vitro gene regulation assays revealed concordance but also major discrepancies between mammals and medaka, notably amongst spatial, temporal expression patterns and regulations of the canonical Hedgehog and R-spondin/Wnt/Follistatin signaling pathways. Examination of Foxl2 protein distribution in the medaka ovary defined a new subpopulation of theca cells, where ovarian-type aromatase transcriptional regulation appears to be independent of Foxl2. In summary, these data show that the regulation of the downstream regulatory network of sex determination is less conserved than previously thought.
Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.
The identity of the gonads is determined by which fate, ovarian granulosa cell or testicular Sertoli cell, the bipotential somatic cell precursors choose to follow. In most vertebrates, the conserved transcription factor FOXL2 contributes to the fate of granulosa cells. To understand FOXL2 functions during gonad differentiation, we performed genome-wide analysis of FOXL2 chromatin occupancy in fetal ovaries and established a genetic mouse model that forces Foxl2 expression in the fetal testis. When FOXL2 was ectopically expressed in the somatic cell precursors in the fetal testis, FOXL2 was sufficient to repress Sertoli cell differentiation, ultimately resulting in partial testis-to-ovary sex-reversal. Combining genome-wide analysis of FOXL2 binding in the fetal ovary with transcriptomic analyses of our Foxl2 gain-of-function and previously published Foxl2 loss-of-function models, we identified potential pathways responsible for the feminizing action of FOXL2. Finally, comparison of FOXL2 genome-wide occupancy in the fetal ovary with testis-determining factor SOX9 genome-wide occupancy in the fetal testis revealed extensive overlaps, implying that antagonistic signals between FOXL2 and SOX9 occur at the chromatin level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.