Porous organic polymers incorporating nitrogen-rich functionalities have recently emerged as promising materials for efficient and highly selective CO2 capture and separation. Herein, we report synthesis and characterization of new two-dimensional (2D) benzene- and triazine-based azo-bridged porous organic polymers. Different synthetic approaches towards the porous azo-bridged polymers were tested, including reductive homocoupling of aromatic nitro monomers, oxidative homocoupling of aromatic amino monomers and heterocoupling of aromatic nitro monomers and a series of aromatic diamines of different lengths and rigidity. IR spectroscopy, 13C CP/MAS NMR spectroscopy, powder X-ray diffraction, elemental analysis, thermogravimetric analysis, nitrogen adsorption–desorption experiments and computational study were used to characterize structures and properties of the resulting polymers. The synthesized azo-bridged polymers are all amorphous solids of good thermal stability, exhibiting various surface areas (up to 351 m2 g−1). The obtained results indicated that the synthetic methods and building units have a pronounced effect on the porosity of the final materials. Reductive and oxidative homocoupling of aromatic nitro and amino building units, respectively, lead to 2D azo-bridged polymers of substantially higher porosity when compared to those produced by heterocoupling reactions. Periodic DFT calculations and Grand-canonical Monte Carlo (GCMC) simulations suggested that, within the used approximations, linear linkers of different lengths do not significantly affect CO2 adsorption properties of model azo-bridged polymers.
Using the dinitrosobenzene polymer (1) as a model, we explore how the electronic, transport, and optical properties of a conjugated organic semiconductor can be modulated. Combining computational and experimental tools,...
Three types of organic solid‐state reactions, dimerizations, dissociations, and Z‐E isomerizations were investigated by using the transformations of aromatic C‐nitroso compounds in crystalline solids as a convenient molecular model. Here we propose a conceptual frame for solid‐state organic reaction mechanisms by examining activation parameters obtained from kinetic measurements under specific experimental conditions. The possibility of the appearance of a sort of short‐lived intermediate liquid phase that constitutes a critical condition for initiating chemical reaction in crystalline solids, similarly to the mechanism for the thermal solid‐state reactions proposed by Paul and Curtin is discussed. The analogy of the proposed concept with the recent hypothesis about the variable rigidity/softness of the reaction cavity in the enzyme reactions, and with the newest molecular dynamic simulation studies of solid phase transformations was considered.
CO2 adsorption properties of azo, azoxy and azodioxy-linked porous organic polymers can be predicted from the calculated electrostatic potential values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.