Cenani-Lenz syndrome (CLS) is an autosomal-recessive congenital disorder affecting distal limb development. It is characterized mainly by syndactyly and/or oligodactyly and is now shown to be commonly associated with kidney anomalies. We used a homozygosity-mapping approach to map the CLS1 locus to chromosome 11p11.2-q13.1. By sequencing candidate genes, we identified recessive LRP4 mutations in 12 families with CLS. LRP4 belongs to the low-density lipoprotein (LDL) receptor-related proteins (LRPs), which are essential for various developmental processes. LRP4 is known to antagonize LRP6-mediated activation of canonical Wnt signaling, a function that is lost by the identified mutations. Our findings increase the spectrum of congenital anomalies associated with abnormal lipoprotein receptor-dependent signaling.
Kabuki syndrome (KS) is one of the classical, clinically well-known multiple anomalies/mental retardation syndromes, mainly characterized by a very distinctive facial appearance in combination with additional clinical signs such as developmental delay, short stature, persistent fingerpads, and urogenital tract anomalies. In our study, we sequenced all 54 coding exons of the recently identified MLL2 gene in 34 patients with Kabuki syndrome. We identified 18 distinct mutations in 19 patients, 11 of 12 tested de novo. Mutations were located all over the gene and included three nonsense mutations, two splice-site mutations, six small deletions or insertions, and seven missense mutations. We compared frequencies of clinical symptoms in MLL2 mutation carriers versus non-carriers. MLL2 mutation carriers significantly more often presented with short stature and renal anomalies (p = 0.026 and 0.031, respectively), and in addition, MLL2 carriers obviously showed more frequently a typical facial gestalt (17/19) compared with non-carriers (9/15), although this result was not statistically significant (p = 0.1). Mutation-negative patients were subsequently tested for mutations in ten functional candidate genes (e.g. MLL, ASC2, ASH2L, and WDR5), but no convincing causative mutations could be found. Our results indicate that MLL2 is the major gene for Kabuki syndrome with a wide spectrum of de novo mutations and strongly suggest further genetic heterogeneity.
Werner mesomelic syndrome (WMS) is an autosomal dominant disorder with unknown molecular etiology characterized by hypo- or aplasia of the tibiae in addition to the preaxial polydactyly (PPD) of the hands and feet and/or five-fingered hand with absence of thumbs. We show that point mutations of a specific nucleotide within the sonic hedgehog (SHH) regulatory region (ZRS) cause WMS. In a previously unpublished WMS family, we identified the causative G>A transition at position 404 of the ZRS, and in six affected family members of a second WMS family we found a 404G>C mutation of the ZRS. The 404G>A ZRS mutation is known as the "Cuban mutation" of PPD type II (PPD2). Interestingly, the index patient of that family had tibial hypoplasia as well. These data provide the first evidence that WMS is caused by a specific ZRS mutation, which leads to strong ectopic SHH expression. In contrast, we show that complete duplications of the ZRS region lead to type Haas polysyndactyly or triphalangeal thumb-polysyndactyly syndrome, but do not affect lower limb development. We suggest the term "ZRS-associated syndromes" and a clinical subclassification for the continuum of limb malformations caused by different molecular alterations of the ZRS.
Altered Bone Morphogenetic Protein (BMP) signaling leads to multiple developmental defects, including brachydactyly and deafness. Here we identify chondroitin synthase 1 (CHSY1) as a potential mediator of BMP effects. We show that loss of human CHSY1 function causes autosomal-recessive Temtamy preaxial brachydactyly syndrome (TPBS), mainly characterized by limb malformations, short stature, and hearing loss. After mapping the TPBS locus to chromosome 15q26-qterm, we identified causative mutations in five consanguineous TPBS families. In zebrafish, antisense-mediated chsy1 knockdown causes defects in multiple developmental processes, some of which are likely to also be causative in the etiology of TPBS. In the inner ears of zebrafish larvae, chsy1 is expressed similarly to the BMP inhibitor dan and in a complementary fashion to bmp2b. Furthermore, unrestricted Bmp2b signaling or loss of Dan activity leads to reduced chsy1 expression and, during epithelial morphogenesis, defects similar to those that occur upon Chsy1 inactivation, indicating that Bmp signaling affects inner-ear development by repressing chsy1. In addition, we obtained strikingly similar zebrafish phenotypes after chsy1 overexpression, which might explain why, in humans, brachydactyly can be caused by mutations leading either to loss or to gain of BMP signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.