Soon after its introduction in 2009, Bitcoin has been adopted by cyber-criminals, which rely on its pseudonymity to implement virtually untraceable scams. One of the typical scams that operate on Bitcoin are the so-called Ponzi schemes. These are fraudulent investments which repay users with the funds invested by new users that join the scheme, and implode when it is no longer possible to find new investments. Despite being illegal in many countries, Ponzi schemes are now proliferating on Bitcoin, and they keep alluring new victims, who are plundered of millions of dollars. We apply data mining techniques to detect Bitcoin addresses related to Ponzi schemes. Our starting point is a dataset of features of real-world Ponzi schemes, that we construct by analysing, on the Bitcoin blockchain, the transactions used to perform the scams. We use this dataset to experiment with various machine learning algorithms, and we assess their effectiveness through standard validation protocols and performance metrics. The best of the classifiers we have experimented can identify most of the Ponzi schemes in the dataset, with a low number of false positives.
Selecting a subset of relevant features is crucial to the analysis of high-dimensional datasets coming from a number of application domains, such as biomedical data, document and image analysis. Since no single selection algorithm seems to be capable of ensuring optimal results in terms of both predictive performance and stability (i.e. robustness to changes in the input data), researchers have increasingly explored the effectiveness of ''ensemble'' approaches involving the combination of different selectors. While interesting proposals have been reported in the literature, most of them have been so far evaluated in a limited number of settings (e.g. with data from a single domain and in conjunction with specific selection approaches), leaving unanswered important questions about the large-scale applicability and utility of ensemble feature selection. To give a contribution to the field, this work presents an empirical study which encompasses different kinds of selection algorithms (filters and embedded methods, univariate and multivariate techniques) and different application domains. Specifically, we consider 18 classification tasks with heterogeneous characteristics (in terms of number of classes and instances-to-features ratio) and experimentally evaluate, for feature subsets of different cardinalities, the extent to which an ensemble approach turns out to be more robust than a single selector, thus providing useful insight for both researchers and practitioners.
Feature selection has become the essential step in biomarker discovery from high-dimensional genomics data. It is recognized that different feature selection techniques may result in different set of biomarkers, that is, different groups of genes highly correlated to a given pathological condition, but few direct comparisons exist which quantify these differences in a systematic way. In this paper, we propose a general methodology for comparing the outcomes of different selection techniques in the context of biomarker discovery. The comparison is carried out along two dimensions: (i) measuring the similarity/dissimilarity of selected gene sets; (ii) evaluating the implications of these differences in terms of both predictive performance and stability of selected gene sets. As a case study, we considered three benchmarks deriving from DNA microarray experiments and conducted a comparative analysis among eight selection methods, representatives of different classes of feature selection techniques. Our results show that the proposed approach can provide useful insight about the pattern of agreement of biomarker discovery techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.