The cause of increased radiosensitivity in ataxia-telangiectasia (AT) cells may be a defect in their ability to respond to DNA damage rather than a defect in their ability to repair it. Doses of x-radiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition in AT cells and thus less delay during which x-ray damage could be repaired. The radioresistance of DNA synthesis in AT cells was primarily due to a much smaller inhibition of replicon initiation than in normal cells; the AT cells were also more resistant to damage that inhibited chain elongation. AT cells have been reported to undergo less radiation-induced mitotic delay than normal cells, which may cause them to move from G2 phase into mitosis before repair is complete and may result in the increased incidence of chromatid aberrations observed by others. Therefore, AT cells fail to go through those delays that allow normal cells to repair DNA damage before it can be expressed.
The mechanisms of recombination responsible for random integration of transfected DNA into the genome of normal human cells have been investigated by analysis of plasmid-cell DNA junctions. Cell clones containing integrated plasmid sequences were selected by morphological transformation of primary human fibroblasts after transfection with a plasmid containing simian virus 40 sequences. Nucleotide sequence analysis of the plasmid-cell DNA junctions was performed on cloned DNA fragments containing the integration sites from two of these cell clones. Polymerase chain reaction was then performed with human cell DNA from primary fibroblasts to isolate the cell DNA from the same sites before plasmid integration. Comparison of the sequences at the plasmid-cell DNA junctions with those of both the original plasmid and the cell DNA demonstrated short sequence similarities and additional nucleotides, typical of nonhomologous recombination. Evidence of short deletions in the cell DNA at the plasmid integration sites suggests that integration occurred by a mechanism similar to that used for repair of spontaneous or gamma ray-induced strand breaks. Plasmid integration occurred within nonrepetitive cell DNA with no major rearrangements, although rearrangements of the cell DNA at the integration site occurred in one of the clones after integration.
Sixty-eight human fibroblast cell strains were assayed for radioresistant DNA synthesis (RDS), which is defined here as the absence of a steep component of inhibition of DNA synthesis in a dose-response curve when rate of DNA synthesis is plotted against radiation doses from 0 to 20 Gy or more. Twenty-seven strains from patients who were previously diagnosed to have ataxia-telangiectasia (AT) were positive for this feature. Among the cell strains that did not show RDS were two from AT obligate heterozygotes (i.e., the parents of AT patients), two from patients with Alzheimer disease, two from patients with Friedreich ataxia, one from a patient with Bloom syndrome, one from a patient with Down syndrome, and six from patients with various immunodeficiencies. Four strains demonstrated RDS that was less pronounced than in most AT cells: one was from a patient with Nijmegen breakage syndrome, one was from a patient without ataxia but with choreiform movement disorder, telangiectasia, and elevated concentrations of alpha-fetoprotein in the blood, and two were from AT patients. RDS therefore is not a necessary trait of human genetic diseases that involve radiosensitivity or immunodeficiency. Although recent reports suggest that some AT patients do not exhibit RDS, we found RDS in all the AT cells we tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.